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Abstract. This paper describes the status of the ISocRob MSL robotic
soccer team as required by the RoboCup 2009 qualification procedures.
Since its previous participation in RoboCup, the ISocRob team has car-
ried out significant developments in various topics, the most relevant
of which are presented here. These include self-localization, 3D object
tracking and cooperative object localization, motion control and rela-
tional behaviors. A brief description of the hardware of the ISocRob
robots and of the software architecture adopted by the team is also in-
cluded.

1 Introduction and Overview

The SocRob project was created in 1997 by the Intelligent Systems Laboratory of
the Institute for Systems and Robotics at Instituto Superior Técnico (ISR/IST),
Technical University of Lisbon, with its primary research focus on applications
involving cooperative robotics and multi-agent systems. The ISocRob team is the
project’s case study on soccer robots, and has regularly participated in RoboCup
Middle-Size League since 1998, in the RoboCup Soccer Simulation League in
2003 and 2004, and in the RoboCup Four-Legged League in 2007, in a joint
effort with the Italian team SPQR.

This paper aims at describing the current status of the ISocRob team as of
2009. In Section 2 the hardware of the robotic soccer platforms currently in use
by the team is described. Section 3 then describes the major accomplishments of
the research carried out by the project since its last participation in RoboCup.

2 Hardware

The omnidirectional robotic soccer platform currently used by the ISocRob team,
the OmnilSocRob platform, was developed jointly between ISR/IST and the
Portuguese SME IdMind. The following are the most relevant details regarding
the capabilities of its actuators and sensors:



Actuators:

— Each of the robot’s three Swedish wheels is actuated by a MAXON DC mo-
tor (model RE35/118776), through a MAXON gear (model 203118) with a
reduction of 21:1, providing the robotic platform with a maximum transla-
tional speed of approximately 3.5 m/s and maximum rotational speed of 20
rad/s;

— In order to kick the ball, an electromagnetic strength controlled kicker is
used;

— To aid in ball dribbling, a rolling drum is present near the kicker, with
controllable rolling speed and elevation.

Sensors:

— The robot’s vision system is based on an AVT Marlin F-033C firewire cam-
era, which is equipped with a fish-eye lens providing a field-of-view of 185°,
facing downwards. This dioptric system endows the robot with omnidirec-
tional vision, capable of detecting relevant objects (such as the ball and other
robots) at a distance of up to 5 m. This particular setup is also less sensi-
tive to vibrations caused by the robot’s motion than the previously used
catadioptric system,;

— Each of the robot’s motors is coupled to a 500 CPR encoder for motor control
and odometry;

— An AnalogDevices rate-gyro (XRS300EB) is present to improve self-localization.

Each of these components is powered by two packs of 9Ah NiMH batteries
per robot.

In this robotic platform, the software architecture (which accounts for most of
the required computational power) runs on a NEC FS900 laptop, equipped with
a Centrino 1.6GHz CPU and 512Mb of RAM, which is connected to the robot’s
sensors and actuators through plug-and-play connections (USB and FireWire).

3 Addressed Research

This section points out the major research topics carried under the ISocRob
team since its last participation in RoboCup Middle-Sized League in 2007.

3.1 The MeRMalD Software Architecture

The SocRob project is currently using MeRMaID (Multiple-Robot Middleware
for Intelligent Decision-making) as its software architecture. Its ongoing develop-
ment was marked by the release of version 1.0 in 2007 [1]. MeRMalID incorporates
into a software architecture the most fundamental items that all robotic sys-
tems share, such as sensors, actuators and control software. By being sufficiently
generic, it provides guidelines that developers should follow when implementing
their solutions. The service-oriented design of the MeRMalD middleware is based
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Fig. 1. Block diagram of the MeRMalD functional architecture. The —= block denotes
main modules, =3 denotes active objects, = denotes multiple active objects, and =
denotes general objects (in object-oriented programming conventions). The — indicates
data flow, while -» indicates events flow.

on the Active Object pattern. Active Objects are objects that decouple method
execution from method invocation in order to simplify synchronized access to
an object that resides in its own thread of control. These objects retain their
own execution context and execution flow. All processing is done within this
context. MeRMalD possesses a modular structure. The main available modules
are Atlas, Communication, Wisdom and Cortex. The Atlas module is where the
interaction with the world occurs. All direct sensing and acting activity is per-
formed within Atlas, perceiving and producing effects on world. Communication
with other robots, external interfaces and the referee box takes place through the
Communication module. Other modules connect to the Communication model
to access the content of the exchanged messages. The Wisdom module is where
the relevant information about the world, such as robot postures, ball position
or current score, is kept and managed. This information can be obtained either
by sensor information or messages received from teammates or the referee box
(through the Communication module). The Cortex is where the decision process
takes place, based on information retrieved from the Wisdom module. The Cor-
tex connects to the Communication module to communicate with other robots,
in order to carry out cooperative behaviors. MeRMalD has been used in the last
2 years in the European project URUS, where it successfully provided support
for the integration of the software developed by the project partners.

3.2 Motion Control

Previous to the introduction of the OmnilSocRob platform, the ISocRob team
used differential-drive robots (Nomadic Super Scouts II). However, since the new



omnidirectional platform came into use, most of the navigation primitives had
not yet been updated to account for the holonomicity of these robots. To solve
this problem, the ISocRob team developed new motion control solutions for the
ball interception and dribbling tasks, specifically for omnidirectional robots. The
approach taken by the ISocRob team, described in [3], was to extend existing
motion control solutions in the field of robotic manipulators to the case of holo-
nomic mobile robots, and particularize them to relevant tasks in the robotic
soccer domain.

The proposed solution to the ball interception problem relies on a combina-
tion of trajectory tracking and proportional navigation techniques. In the con-
text of moving object interception, the application of proportional navigation
techniques usually results in shorter interception episodes, and react better to
unexpected changes in the target’s motion. However, by themselves, they are
not capable of matching the velocity of the target at the instant of interception,
which justifies the use trajectory tracking in the final instants of the intercep-
tion process. Successful interception is then achieved by properly selecting the
instants where the control of the robot should switch between trajectory tracking
and proportional navigation.

In order to dribble the ball efficiently, the Interface-Control scheme intro-
duced in the context of coordinative robotic manipulation, was adopted by the
ISocRob team and extended to the field of mobile robotics. This approach relies
on the calculation of the force that must be applied to the ball for it to reach the
desired state. This is done through a dynamic model of the ball and a suitable
‘object controller’. In order to translate this required force vector into a suitable
displacement of the mobile robot, an appropriate controller for the robot must
be used that is able to independently follow force and position references, which
is accomplished through Hybrid Position/Force control.

An obstacle avoidance algorithm was also implemented, that is compatible
with the proposed control solutions. This algorithm deflects the linear velocity
vector of the mobile robot so that it passes tangent to the obstacles in configura-
tion space (which are assumed to be circular). Besides being a computationally
light algorithm, and not being subject to local minima, the paths followed by the
robot while using this algorithm typically approach the globally shortest paths
in the environment.

3.3 Self-Localization

Until recently, the self-localization of the ISocRob robots was accomplished
through a Kalman Filter, which would make use of certain features in the field
(such as the color of the goals) which are not available anymore according to
the current RoboCup regulations. This has prompted the ISocRob team to im-
plement a new self-localization algorithm, based on the popular Monte Carlo
Localization (MCL) approach. The new approach, fully described in [2], makes
use of information about the visible field lines to determine the posture of the
robot, and takes advantage of the installed gyroscope to resolve ambiguity is-
sues due to the symmetry of the field. As with the traditional MCL approach,



a predefined number of particles are uniformly spread across the field at the
algorithm’s start. The prediction step of the algorithm then relies on a fusion
of odometry and gyroscope data (in a technique called gyrodometry) to account
for the robot’s movement, and all particles are displaced accordingly. In the
update step, a fixed number of points representing the field lines are obtained
from each camera image through simple morphological operations that isolate
the image’s green-white transitions. A weight is then assigned to each particle
based on the distance between the projected line points and the nearest field
lines. In the resampling step, particles are drawn from the particle set according
to their weight, and so the particles that best match the robot’s real location
have a greater chance of being redrawn. By repeating this sequence of steps the
particles eventually become clustered around the robot’s real posture. To reduce
the computational effort, the algorithm is able to dynamically alter the number
of particles that are used, since it is redundant to possess a large amount of
particles in a small cluster around the robot’s posture. In the event that the
robot becomes lost (i.e. its estimated posture does not match its real posture),
the required number of particles is increased, and new, uniformly distributed
particles are created and inserted into the particle set.

3.4 3D Ball Tracking

An important aspect of any robotic soccer player is its ability to detect and
track the soccer ball in a reliable manner. Since these robots are already able
to elevate the ball from the field of play in some situations (by performing a
high kick for example), it is important to be able to track the ball in a three-
dimensional space. Furthermore, since it is expected in the near future that these
robots must be able to identify an arbitrarily colored soccer ball, the dependence
on ball-detection algorithms that rely on color information must be reduced.
To overcome these limitations, the [SocRob team has implemented a 3D ball
tracking algorithm, which makes use of a particle filter to detect and track a
ball based on shape information [4]. The identification of the ball in each image
captured by a robot’s camera is based on Taiana’s [7] ball projection model. A
3D model of the ball is used to calculate its 2D contour projected on the image.
The particle filter is initialized by uniformly spreading a fixed number of ball
hypothesis (particles) on the ground, in a 5 meter area surrounding the robot.
This allows for a reduction in the search state space, as it is assumed that the ball
is on the floor, and constrain the detection according to the camera resolution.
These particles contain information about the ball’s position and velocity in the
3D space. The prediction step then takes into account both the movement of the
ball and of the robot to displace all particles accordingly and allow continuous
tracking of the ball. In the update step, two YUV histograms are obtained, for
both the inside and outside boundaries of the ball. The likelihood of a given
particle is obtained by applying a similarity metric between these histograms,
which allows tracking of arbitrarily colored balls since the reference color model
for the inside boundary is not provided (i.e. the likelihood of a particle is simply
a function of the mismatch between both boundaries). The particles are then



resampled according to a low-variance technique that ensures diversity in the
particle set.

3.5 Cooperative Object Localization

For any soccer team (robotic or not) to function properly it is fundamental that
as many of the players as possible are aware of the location of the soccer ball.
Since the range at which each robot is able to detect the ball is limited, it is im-
portant for the team to share the ball information between its players, becoming
in this context a team of cooperative sensors. Non-parametric representations
of the probability density function (pdf) of each of these sensors, as obtained
through the particle filter based approach described in Section 3.4, are an effi-
cient way of dealing with the sensor’s nonlinearities, but, in their direct form,
their to communication to other agents would require the transmission of large
amounts of data (namely, the particle set). Under these circumstances, a more
efficient representation of the sensor’s information may be obtained through
a Gaussian Mixture Model (GMM), which can be obtained from the original
sample-based data through the application of parameter estimation algorithms
such as the Expectation Maximization (EM) algorithm [4]. The lower dimension
parameters of the GMM may then be transmitted efficiently to other team mem-
bers. Instead of fusing all the data from the sensors into a single estimate of the
ball’s state, which assumes that the measurements taken by each sensor always
contribute towards a more accurate estimate, the implemented cooperative per-
ception model takes advantage of the GMM representation in two distinct forms.
One is to improve the local ball particle filter in a distributed fashion way by
injecting new particles drawn directly from the received GMMs. The other is to
compute a ball team estimate directly from the received GMMs target distri-
bution using Covariance Intersection (CI). This ball team estimate can also be
used to improve each robot’s self-localization, since a ‘lost’ robot may use this
information as a landmark when updating its own belief.

3.6 Relational Behaviors

With the increasing capabilities of robotic soccer platforms, both as an indi-
vidual agent as part of a team, cooperation between these robots is no longer
just a significant research contribution. In some situations, this cooperation is
of utmost relevance for the success of the team . This occurs, for example, in
foul-taking situations, where the current RoboCup MSL rules state that for a
goal to be valid after a free kick, at least two different robots must have touched
the ball. One of the robots, referred to as the kicker, will have to move to the
ball and kick in the direction of his partner - the receiver - who should intercept
the ball. In these situations, a relational behavior is required. Relational behav-
iors are, in this sense, robotic behaviors that concern more than one player,
and require the establishment of a commitment between the involved players.
This commitment ensures that all of the players will pursue the execution of the
behavior until its end. A relational behavior execution ends with its success or



failure. In both cases, the intervening robots must be in agreement about the
state of the commitment, meaning that if one of the robots wants to break the
commitment it must inform the other(s). This way none of robots will become
blocked in a deadlock situation. Another essential requirement for a relational
behavior is synchronization. If there is no synchronism between the robots in-
volved in the relational behavior, then this behavior is likely to fail. Due to this,
an efficient commitment management is required and a good synchronization
between the participants is essential. In [5, 6], a systematic methodology for the
design of such relational behaviors is presented, based on the Joint Commitment
Theory [8], and the necessary commitment and synchronization mechanisms are
defined. Based on these methods, a set of relational behaviors that deal with
common situations during a robotic soccer match were subsequently developed
for the ISocRob team using Petri nets and implemented in the MeRMalD soft-
ware architecture. In [9,10], Joint Commitment Theory is again applied, using
Petri nets, to implement soccer-oriented relational behaviors on a team of AIBO
robots.

3.7 Visual tracking of teammates for the implementation of
relational behaviors using implicit communication

Human-robot or robot-robot teamwork can be based on either explicit (e.g.,
wireless) communication or implicit (e.g., based on visual observation of the
teammate) communication. The latter is more difficult to achieve, but avoids
broken communication links and relies on the exchange of "natural” communi-
cation signals. A future goal of the ISocRob team is to model and implement
teamwork commitment and synchronization signal exchange between the soccer
robots, using implicit communication. This requires individual tracking of team-
mates and opponents visually by every team member in addition to the existing
obstacle and ball tracking techniques. Tracking teammates involves identifying a
double-ellipse shaped colored marker which meets certain requirements as men-
tioned in the RoboCup MSL 2009 rules and regulations. Each team member can
be recognized by a specific orientation of the double-ellipse marker on them. A
particle filter-based algorithm is then used to visually track these markers. This
approach implements a robust technique developed in [11] with some innovative
modifications to the update step of the particle filter, which reduce its computa-
tional complexity. The basic concept behind this technique is a Hough transform
[12] using a lesser dimensional Hough space than it is theoretically required. An
ellipse can be described using five parameters, namely the center coordinates
(Xo,Yp), half lengths of major and minor axis (a,b) and the orientation angle
«a with respect to to the X-axis in Cartesian coordinates. This implies that a
traditional Hough transform would require a 5-dimensional Hough space to rig-
orously find the ellipses in a 2-D plane. In this approach, the Hough transform
is accomplished using a single dimension accumulator. The major modifications
to the algorithm in [11] is in the calculation of parameter b, the minor axis half
length which eventually is the accumulator parameter. Here we calculate b using
¢, d, e and f and angle 7 for any given point (x,y) which lies on the ellipse.
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Fig. 2. Calculation of ellipse parameters

The foci of the ellipse are located at f; and fy (Figure 2). The property of the
ellipse exploited here is that the sum of distances from any point on ellipse to
the foci (¢ + e) is always equal to the length of the major axis (2a). Another
modification is that the array of edge points, which form candidates to vote for
an ellipse, gradually contracts as we find legal instances of ellipses in the image.
This reduces the computational complexity further.
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