
Task Specific Motion Control of Omnidirectional Robots

João Vicente Teixeira de Sousa Messias

Dissertação para a obtenção do Grau de Mestre em

Engenharia Electrotécnica e de Computadores

Júri

Presidente: Doutor Carlos Jorge Ferreira Silvestre

Orientador: Doutor Pedro Manuel Urbano de Almeida Lima

Vogal: Doutor João Fernando Cardoso Silva Sequeira

Setembro de 2008

i

Acknowledgments

I would like to extend my thanks to Professor Pedro Lima, for giving me the opportunity to

work in what is undoubtedly an important aspect of the SocRob robotic soccer project in its current

state, and also for supervising my work, discussing my ideas, and reviewing this thesis.

To my father, for the instrumental help in illustrating this work, and for the long hours of his

own free time in designing some of these figures, my very special thanks.

I also thank my mother, who wasn’t at first particularly convinced of my professional choice,

but supported me nonetheless.

Finally, I give my thanks to my friends, and to the rest of my family, who have always

understood the difficulties involved in making this thesis, and may now see the result of my long-

running efforts.

ii

Abstract

This thesis addresses the most common motion control (guidance) problems that a holonomic

mobile robot has to face, with particular emphasis on the tasks that must be performed in a robotic

soccer environment.

The general situations where the robot must be driven to a reference posture (stabilization) or

follow a reference trajectory (tracking) are considered. These problems are solved through feedback

linearization, and the respective control laws are analyzed both in continuous-time and in discrete-

time.

More specific tasks may require the interaction between the mobile robot and a moveable

object in its environment: in a robotic soccer setting, two such tasks are those of intercepting a freely

rolling ball and transporting the soccer ball. Solutions are presented to each of these problems, which

explicitly take advantage of the omnidirectional capabilities of these robots. Ball interception is

achieved through a solution that combines the concepts of trajectory-tracking and proportional

navigation. Moving the ball is accomplished through a control scheme that determines at each instant

the necessary force that must be applied to the ball, and then uses it as a reference for a hybrid

force/position control law that drives the robot.

In each of these problems, the limitations of the robot’s actuators are considered.

In order for the proposed control solutions to be useful in cluttered environments, the problem

of obstacle avoidance is considered. The proposed solution consists in determining the locally optimal

direction for movement in a reactive manner, and specifically addresses environments that are

sparsely populated with fast-moving objects.

Keywords: Mobile robot motion control; Moving object interception; Nonlinear control; Object

manipulation; Obstacle avoidance; Robotic soccer.

iii

Resumo

Nesta dissertação são abordados os problemas de condução mais comuns que um robot

móvel holonómico tem de enfrentar, com especial ênfase nas tarefas que são realizadas num

ambiente de futebol robótico.

As situações gerais em que o robot deve ser dirigido para uma dada postura (estabilização)

ou uma dada trajectória (seguimento) são considerados. Estes problemas são solucionados através

de linearização exacta por retroacção, e as leis de controlo resultantes são analizadas em tempo

contínuo e em tempo discreto.

Em tarefas mais específicas, pode ser necessária a interacção entre o robot e um objecto

móvivel no seu ambiente: no futebol robótico, dois destes problemas são o de interceptar uma bola

que rola livremente e o de transportar a bola. Apresentam-se soluções, para ambos os problemas,

que tiram partido das capacidades omnidireccionais destes robots. A intercepção da bola é

conseguida através de uma solução que combina seguimento de trajectórias e navegação

proporcional. O transporte da bola é solucionado através de um esquema de controlo no qual a força

que deve ser aplicada à bola é determinada, e em seguida serve de referência para um controlador

híbrido de força/posição que conduz o robot.

Em cada um destes problemas, são consideradas as limitações dos actuadores do robot.

Para que as soluções apresentadas sejam úteis num ambiente que contenha obstáculos,

também é considerado o problema de evitar esses obstáculos. A solução proposta consiste em

determinar a direcção localmente óptima para o movimento, reactivamente, e é adaptada

especificamente para ambientes esparsos com obstáculos em movimento.

Palavras-Chave: Condução de robots móveis; Controlo não-linear; Evitar obstáculos; Futebol

robótico; Intercepção de objectos em movimento; Manipulação de objectos.

iv

Contents

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Objectives .. 2

1.3 Original Contributions .. 3

1.4 Thesis Outline.. 3

2 Motion Control in a Task-Execution Architecture ... 4

2.1 Common Task-Execution Architectures .. 5

2.2 Motion Control as a Part of MeRMaID .. 6

3 Basic Motion Control ... 9

3.1 Point Stabilization .. 9

3.2 Point Tracking.. 13

3.3 Orientation control ... 16

3.3.1 Velocity Control.. 16

3.3.2 Torque Control... 18

3.4 Dealing with Actuator Saturation Problems... 21

4 Task-Specific Motion Control ... 25

4.1 Modelling the Object.. 25

4.2 Moving Object Interception.. 26

4.2.1 Overview of the Solution.. 28

4.2.2 Obtaining the Desired Interception Trajectory... 30

4.2.3 Motion Control Requirements of an Interception Task.. 31

4.2.4 Ideal Proportional Navigation Guidance.. 32

4.2.5 Control Signal Conditioning for IPNG.. 35

4.2.6 Matching the Interception Trajectory through Point Tracking.. 36

4.2.7 Selection of the Proper Control Signal .. 36

4.3 Object Transport .. 39

4.3.1 Overview of the Solution.. 39

4.3.2 Object Controller – PD Control .. 41

4.3.3 Robot Controller – Hybrid Position/Force Control ... 42

4.3.4 Actuator Limitations ... 47

v

5 Obstacle Avoidance... 48

5.1 Related Work... 48

5.2 Overview of the Solution.. 51

5.3 Avoiding Static Obstacles.. 52

5.4 Avoiding Moving Obstacles ... 58

5.5 Obstacle Avoidance for Dribbling and Interception ... 61

6 Experimental Setup.. 62

6.1 The OmniISocRob Platform... 62

6.2 The Experimental Environment ... 64

7 Results .. 66

7.1 Posture Stabilization.. 66

7.2 Obstacle Avoidance... 68

7.3 Posture Tracking ... 69

7.4 Moving Object Interception.. 71

7.5 Object Transport .. 75

8 Conclusions and Future Work .. 78

8.1 Conclusions ... 78

8.2 Future Work... 79

9 Bibliography ... 80

A1 Kinematic and Dynamic Properties of an Omnidirectional Mobile Robot …………………….84

vi

List of Figures

FIGURE 1: THE MAIN COMPONENTS THAT INTERVENE IN THE EXECUTION OF A TASK BY A MOBILE ROBOT. 4

FIGURE 2: AN EXAMPLE OF A PURELY SERIAL ARCHITECTURE ... 5

FIGURE 3: AN EXAMPLE OF A PURELY BEHAVIOR-BASED ARCHITECTURE ... 5

FIGURE 4: LAYOUT OF THE MERMAID FUNCTIONAL ARCHITECTURE... 7

FIGURE 5: ROOT-LOCUS FOR THE DISCRETE-TIME KINEMATIC MODEL FOR ORIENTATION... 17

FIGURE 6: BLOCK DIAGRAM FOR VELOCITY-BASED ORIENTATION CONTROL .. 17

FIGURE 7: ROOT-LOCUS FOR THE DISCRETE-TIME DYNAMIC MODEL FOR ORIENTATION... 19

FIGURE 8: ROOT-LOCUS FOR THE COMPENSATED ORIENTATION DYNAMIC MODEL (B=0.86). .. 19

FIGURE 9: BLOCK DIAGRAM FOR TORQUE-BASED ORIENTATION CONTROL.. 19

FIGURE 10: DIAGRAM SHOWING THE FORCES INVOLVED IN THE MOTION OF THE BALL.. 25

FIGURE 11: REPRESENTATION OF THE BALL INTERCEPTION TASK. ... 28

FIGURE 12: CONTROL ARCHITECTURE FOR THE BALL INTERCEPTION SYSTEM. .. 29

FIGURE 13: AN EXAMPLE OF AN ADMISSIBLE TRAJECTORY, IN THE WORLD FRAME, FOR THE BALL INTERCEPTION PROBLEM. 29

FIGURE 14: INTERCEPTION GEOMETRY THROUGH IPNG. ... 32

FIGURE 15: REPRESENTATION OF THE TRAJECTORY DESCRIBED BY THE ROBOT IN A FRAME MOVING WITH THE SAME VELOCITY AS THE

BALL. WHILE UNDER THE CONTROL OF IPNG, THIS TRAJECTORY IS APPROXIMATELY LINEAR. .. 34

FIGURE 16: ALGORITHM TO DETERMINE THE SUITABLE TYPE OF MOTION CONTROL DURING BALL INTERCEPTION. 37

FIGURE 17: AN EXAMPLE OF A BALL INTERCEPTION TASK. (A): THE CONTROL SIGNALS (REPRESENTED BY THE MAGNITUDE OF THE LINEAR

ACCELERATION) APPLIED TO THE ROBOT, AND THE DISTANCE FROM THE ROBOT TO THE BALL, DURING INTERCEPTION. (B): THE

TRAJECTORY DESCRIBED BY THE ROBOT IN THE WORLD FRAME, WHEN THESE CONTROLS ARE APPLIED. IN BOTH CASES, THE

VARIOUS TYPES OF MOTION CONTROL ARE ALSO SHOWN: POINT TRACKING (PT), IPNG AND CONSTANT DECELERATION

(BRAKING), AS WELL AS THE SWITCHING INSTANTSࡿ࢚, ࡿ࢚ ANDࡿ࢚. ... 38

FIGURE 18: THE INTERFACE-CONTROL SCHEME FOR THE MANIPULATION OF AN OBJECT BY A SINGLE ROBOT................................. 40

FIGURE 19: REPRESENTATION OF THE DRIBBLING PROCESS FOR AN OMNIDIRECTIONAL ROBOT. AN EXAMPLE OF A TRAJECTORY

DESCRIBED BY THE CENTER OF THE BALL IS SHOWN AS A SOLID LINE. THE DESIRED TRAJECTORY DESCRIBED BY THE CENTER OF AN

OMNIDIRECTIONAL ROBOT DRIBBLING THE BALL IS SHOWN AS A DASHED LINE. .. 40

FIGURE 20: GEOMETRIC DETAILS OF THE DRIBBLING PROCESS. .. 42

FIGURE 21: TYPICAL OBSTACLE CONFIGURATION AND SHORTEST PATH TO TARGET... 52

FIGURE 22: TANGENT GRAPH FOR THE SITUATION REPRESENTED IN FIGURE 21. ... 54

FIGURE 23: RELEVANT GEOMETRIC DETAILS FOR OBSTACLE AVOIDANCE. ... 55

FIGURE 24: OBSTACLE AVOIDANCE FOR MULTIPLE OBSTACLES AND THE PRESENCE OF “SHADOWED” OBSTACLES. 57

FIGURE 25: ENDPOINT CALCULATION FOR AN OBSTACLE CLUSTER. THE TWO POSSIBLE DETOUR ANGLES FOR EACH OBSTACLEࡻARE

SHOWN ASࢽ,. NOTE THAT FOR EVERY OBSTACLE EXCEPTࡻ THERE IS ONLY ONE VALID SOLUTION, WHICH IS EITHER A POSITIVE

(RED) OR NEGATIVE (BLUE) DETOUR. .. 58

FIGURE 26: AVOIDING A MOVING OBSTACLE. .. 59

vii

FIGURE 27: THE ROBOTIC SOCCER PLATFORM CURRENTLY USED BY THE ISOCROB TEAM. .. 62

FIGURE 28: RELEVANT COMPONENTS AND DIMENSIONS OF THE OMNIISOCROB PLATFORM.. 63

FIGURE 29: THE ROBOTIC SOCCER FIELD. .. 65

FIGURE 30: A SOCCER BALL COMPLIANT WITH THE ROBOCUP REGULATIONS. ... 65

FIGURE 31: RESPONSE OF THE CLOSED-LOOP SYSTEM DURING POSTURE STABILIZATION. THE PRESENTED VELOCITY COMPONENTS ARE

TAKEN IN THE ROBOT’S FRAME. ... 67

FIGURE 32: OBSTACLE AVOIDANCE WITH A TYPICAL OBSTACLE CONFIGURATION. THE BLACK FILLED CIRCLES REPRESENT THE STATIC

OBSTACLES IN THE ENVIRONMENT, AND THE GREEN CIRCLES AROUND THEM REPRESENT THE SAFETY DISTANCE THAT THE ROBOT

MUST KEEP.. 68

FIGURE 33: ESCAPING A LOCAL MINIMUM SITUATION. .. 69

FIGURE 34: POSITION AND LINEAR VELOCITY (WORLD FRAME) OF THE ROBOT DURING TRAJECTORY TRACKING, AS WELL AS THE ANGLE

BETWEEN THE ROBOT AND THE OBJECT IN THE ROBOT’S FRAME.. 70

FIGURE 35: POSITION AND LINEAR VELOCITY (WORLD FRAME) OF THE ROBOT, AS WELL AS THE DISTANCE AND RELATIVE ANGLE TO THE

BALL, DURING THE FIRST INTERCEPTION EXPERIMENT. .. 72

FIGURE 36: POSITION AND LINEAR VELOCITY (WORLD FRAME) OF THE ROBOT, AS WELL AS THE DISTANCE AND RELATIVE ANGLE TO THE

BALL, DURING THE SECOND INTERCEPTION EXPERIMENT. .. 73

FIGURE 37: TRAJECTORIES DESCRIBED BY THE ROBOT AND THE BALL DURING UNOBSTRUCTED INTERCEPTION................................ 74

FIGURE 38: TRAJECTORIES DESCRIBED BY THE ROBOT AND THE BALL IN A SITUATION WHERE THE BALL COLLIDES WITH AN OBSTACLE. 74

FIGURE 39: POSITION OF THE BALL AND THE ROBOT’S GEOMETRIC CENTER DURING UNOBSTRUCTED DRIBBLING, AS WELL AS THE

DISTANCE AND RELATIVE ANGLE BETWEEN THE BALL AND THE ROBOT. ... 75

FIGURE 40: POSITION, RELATIVE DISTANCE AND RELATIVE ANGLE DURING TRANSPORT WHILE AVOIDING OBSTACLES. 76

FIGURE 41: TRAJECTORY DESCRIBED BY THE ROBOT’S GEOMETRIC CENTER AND THE BALL DURING AN UNOBSTRUCTED TRANSPORT. THE

BALL BEGINS ITS MOTION AT POSITIONAND ENDS ATࢌ. ... 77

FIGURE 42: TRAJECTORY DESCRIBED BY THE ROBOT’S GEOMETRIC CENTER AND THE BALL DURING TRANSPORT WHILE AVOIDING

OBSTACLES. THE OBSTACLES ARE REPRESENTED BY THE BLACK FILLED CIRCLES IN THE ENVIRONMENT. AROUND THESE, A GREEN

CIRCLE IS DRAWN THAT SYMBOLIZES THE SAFETY DISTANCE THAT THE ROBOT MUST KEEP DURING UNRESTRICTED MOTION, AND A

RED CIRCLE, WHICH REPRESENTS THE NECESSARY SAFETY DISTANCE WHILE DRIBBLING. THE BALL BEGINS ITS MOTION AT POSITION

AND ENDS ATࢌ. .. 77

FIGURE 43: REPRESENTATION OF THE WORLD FRAME AND THE ROBOT FRAME. .. 84

FIGURE 44: BASIC LAYOUT OF A THREE-WHEELED OMNIDIRECTIONAL ROBOT. .. 86

viii

List of Tables

TABLE 1: INITIAL CONDITIONS FOR THE POSTURE STABILIZATION EXPERIMENTS. .. 66

TABLE 2: CORRELATION COEFFICIENTS AND SETTLING TIMES FOR THE POINT STABILIZATION EXPERIMENT. 66

TABLE 3: INITIAL CONDITIONS FOR THE POSTURE TRACKING EXPERIMENTS. .. 69

TABLE 4: INITIAL CONDITIONS FOR THE BALL INTERCEPTION EXPERIMENTS. .. 72

TABLE 5: INITIAL CONDITIONS FOR THE OBJECT TRANSPORT EXPERIMENTS. .. 75

1

1 Introduction

1.1 Motivation

The domain of application of mobile robotics is always expanding, and with it the complexity of

the tasks that a mobile robot must be prepared to accomplish also increases. In many environments,

the speed at which the robot performs these tasks is critical, as well as the overall safety of the robotic

system.

For the correct performance of its tasks, some form of guidance must be applied to the motion of

a mobile robot. Motion control relates to the operations that must be performed, in order to obtain

appropriate controls for the robot to perform its necessary movements. From these controls, the

respective signals for the robot’s actuators are obtained, and the effective displacement of the robot is

carried out. The control techniques that are applicable to a specific robotic system are largely

dependent on the robot’s type of locomotion and actuator configuration.

Several approaches to the control of non-holonomic (differential-drive) robots in the robotic

soccer environment were developed by the ISocRob team (the IST/ISR robotic soccer team),

addressing tasks such as achieving a specific position in the field, avoiding any obstacles along the

way [1], and dribbling the ball whilst taking into account the physical restrictions inherent to that

process [2]. Recently, the application of holonomic robots to Middle-Sized League robotic soccer

became widespread. With it, new and better ways to accomplish common tasks, such as those that

involve some form of interaction with the ball, were sought by most teams. The ISocRob team has

since developed a team of holonomic robotic systems, but its motion control techniques had not been

updated, up until the present work, to match the capabilities of those systems, for all but the most

basic tasks. As a consequence, the robots would not make use of their omnidirectionality while

dribbling the ball, for example, and would instead execute these tasks by resorting to the outdated

concepts developed in the non-holonomic context.

The main motivation for this work then comes from the practical necessity of obtaining new forms

of motion control that fully exploit the capabilities of holonomic robots. The domain of application of

these control techniques include, but are not limited to, the robotic soccer environment. This is

achieved by using well known results of control theory to describe rigorous solutions to the most

common tasks, the performance of which can be readily analyzed, and expanding existing works

within the domain of robotics to allow holonomic mobile robots to solve more particular tasks that

involve object interaction.

2

1.2 Objectives

It is the main objective of this work to provide a framework to holonomic robot control, which can

be applied in the Middle-Sized League robotic soccer environment. This, in turn, comes as a

consequence of a more particular goal of developing control solutions that allow the ISocRob

holonomic robots to efficiently capture and transport a freely rolling ball in an environment populated

with dynamic obstacles. To this end, particular focus is given to the tasks of ball interception and

dribbling. As an extension to this original goal, the most common tasks that a robotic soccer player

has to perform that do not require explicit interaction with the soccer ball are also considered, and

appropriate solutions are sought for each of them. These solutions should extend and improve the

existing guidance algorithms of the ISocRob team, which are not fully applicable to holonomic robots,

or fail to make use of their capabilities.

More specifically, the motion control problems that should be dealt with are associated with the

following tasks:

 Intercepting a freely rolling ball, with arbitrary initial conditions for the position and velocity of

both the robot and the ball. The ball may suffer unpredictable deviations in its trajectory from

collision with other objects in the field or from the effects of friction forces. This interception

should be done as fast as possible, and in such a way that the robot is immediately able to

begin transporting the ball to another position;

 Transporting the ball to a given position in the field, not necessarily stabilizing the object

around the reference, in such a way that the total required time is minimal, and considering

that the robot may encounter unexpected disturbances along its motion. The restrictions

imposed by the physical dimensions of the robot and the ball should be taken into account, as

well as the limited capabilities of the robot’s actuators;

 Driving the robot to a given posture in the field, which it should then maintain (solving the

stabilization problem for a reference posture).

 Following a reference trajectory, which can be thought of as a reference posture moving with

a certain velocity and acceleration (solving the tracking problem for a reference trajectory).

 It should be possible to specify the stabilization and tracking problems independently for the

position and orientation of the robot. This means, for example, that the robot should be able

to move to a given position in the field whilst maintaining itself oriented towards a moving

target.

 In all of the above tasks, it is necessary to consider that dynamic obstacles are present in the

robot’s environment, which must be properly avoided.

For the purposes of this work, it is assumed that the robot possesses the required sensors and

the respective algorithms to obtain the relevant information from the environment, for each task, and

that this information may contain noise.

It must also be considered that the motion control solutions must be implemented as part of a

task-execution architecture, which, in the case of the ISocRob team, is the MeRMaID architecture, and

which may affect the overall performance of those solutions.

3

1.3 Original Contributions

This work presents the following original content:

 The control solutions for the ball interception and dribbling tasks presented in this work are

based on research that was originally developed in the context of robotic manipulators. To the

best of the author’s knowledge, no effort has been previously made to adapt these solutions to

the field of mobile robotics;

 In the robotic soccer environment, the effects that the limitations of the robot’s actuators may

have on the tasks that require interaction with the ball have been left unconsidered up until

now, except partly in the work of B. Damas in [2];

 The previous approaches taken by the ISocRob team [1],[2], combined motion control and

local motion planning (obstacle avoidance) indistinguishably. This work maintains a clear,

modular definition of both of these components of a mobile robot’s navigation to provide

adaptability to the specification on new tasks and robustness to changes in the robot’s

physical properties;

 The proposed obstacle avoidance algorithm extends the concepts introduced by existing

algorithms to deal with dynamic obstacles, while focusing on reactivity and computational

efficiency.

1.4 Thesis Outline

The work contained in this document is organized as follows: Chapter 2 discusses the

implementation of motion control in common task-execution architectures and, specifically, in the

MeRMaID architecture used by the ISocRob team, and describes the limitations that these

architectures impose on the control techniques that may be applied. Chapter 3 describes the solutions

to the most basic tasks that an omnidirectional robot is bound to encounter, and that do not require

any explicit interaction with objects in its environment. In Chapter 4, the solutions to the specific

problems of moving object interception and object transport are discussed. Chapter 5 introduces the

obstacle-avoidance algorithms that allow the robot to accomplish its tasks safely. The hardware details

of the ISocRob robots are presented in Chapter 6, along with the experimental setup that was used to

verify the validity of the proposed solutions. In Chapter 7, experimental results are presented and

discussed. Finally, in Chapter 8, conclusions are drawn, and the main topics where future work may

be developed are detailed.

4

2 Motion Control in a Task-Execution
Architecture

Generally speaking, the execution of a mobile robot’s intended tasks can be broken down into a

set of components, each representing a specific range of “competences” that the robot must display.

These are perception, localization, cognition and motion control.

Perception relates to a mobile robot’s ability to sense its environment and obtain useful

information from the respective sensor data; Localization is the process of obtaining an estimate of the

robot’s posture, with respect to a model of its environment that is either supplied beforehand or

constructed by the robot; Cognition refers to the capability of identifying the most appropriate actions

to accomplish the robot’s task at every given moment; Finally, Motion Control consists of the

operations that must be performed in order to generate appropriate control inputs for the mobile robot

to execute its necessary movements.

Though each of these elements is subject to extensive study and cover varied scientific domains,

the present work is focused on the aspects of task execution directly linked to robot mobility, in a

robotic soccer environment. These include motion control and the lower-level aspects of cognition. It

is the goal of this section to briefly describe how these components are integrated into a robot’s task-

execution architecture, and the effects and limitations that such architectures can have on the

performance of a mobile robot in accomplishing a given task. This is relevant for the development of

efficient control solutions, which will be under study for the remainder of this work. In particular, the

MeRMaID architecture, currently implemented on the ISocRob soccer robots, is explored with respect

to its capabilities for rigorous motion control.

Localization

Cognition

Motion ControlPerception

Environment

Sensors Actuators

Figure 1: The main components that intervene in the execution of a task by a mobile robot.

5

2.1 Common Task-Execution Architectures

The most common mobile robot control architectures follow the basic serial decomposition

(functional) or parallel decomposition (behavior-based) approaches [3],[4], or some combination of

these. They are distinguished by the control path to the robot’s actuators, i.e. by which modules are

allowed to perform motion control upon the robot itself, and by the dependencies among them.

In the serial architecture, the control inputs supplied to the robot are the result of a sequential process,

where the output of each module is fully dependent on the outputs of its predecessor. The sequence

usually derives from the Sense-Model-Plan-Act paradigm. From a control perspective, this means that

a serial architecture is a well defined control loop, and so the overall system is predictable and its

performance can be analyzed with relative ease. The disadvantage of this type of architecture lies in

its susceptibility to errors, which propagate throughout the process, and its inflexibility to modifications

in the robotic platform, such as the addition of multiple sensors, or the extension of the robot’s

intended tasks. This is turn leads to its lack of usefulness in most long-term robotic applications, where

modularity is sought.

Figure 2: An example of a purely serial architecture

Figure 3: An example of a purely behavior-based architecture

In contrast, the control inputs sent to the robot’s actuators in a purely behavior-based

architecture may originate from any of its modules, which run simultaneously and at different

frequencies. Each of these modules, a behavior in itself, constitutes an abstraction that allows the

architecture to function without depending on the details of the implementation of each of said

behaviors. It is important to note that in such a case, the motion control requirements of two or more of

these behaviors may be in conflict – this may happen, for example, in a common situation where a

robot is required to reach a given posture in its environment, but at the same time it must avoid any

obstacles in its vicinity. An important aspect of this type of architecture is how to attribute control to

each specific behavior. A simple approach is to permit control by a single behavior at any given time,

in what is known as a switched-parallel architecture. An example of this is the Subsumption

6

architecture proposed by Brooks in [3], where the access to the robot’s actuators occurs in a

prioritized fashion. In these architectures, the system may exhibit undesirable transient effects when

the control switches from one behavior to another, and so the frequency at which this switching occurs

must be relatively low. Other possible approaches exist, such as allowing two or more modules to

perform motion control simultaneously, but this is usually very disadvantageous, since the system can

even be lead into instability. The main advantage of a behavior-based architecture lies in its flexibility,

as each module is independent from the functionalities of other modules, and so they may be altered,

added or removed without it having a large impact on the remainder of the system, which is usually

very desirable for robotic applications which are subject to frequent modifications. These architectures

are also more suitable to the usage of multiple sensors, which helps reduce the associated uncertainty

and increases the overall robustness of the system. Insofar as motion control is concerned, however,

it is difficult to verify any sort of performance specifications on the overall system. This is due not only

to the unpredictability of the instants where the active behaviors are changed, but also because the

involved control techniques must be specified independently for each behavior, and are therefore

utilized at different time intervals. This, in turn, raises some problems: it is difficult to interact with the

robot’s actuators in a rigorous manner, since their control usually runs on its own, fixed frequency, and

therefore any analysis performed upon the control laws of a specific behavior may lose some of its

legitimacy in the presence of this additional sampling step; also, if any of the control-relevant

properties of the robot is modified, such as its weight, physical dimensions, or the performance of its

actuators, then all of the related behaviors will have to be revisited and updated individually, and some

of the applied control laws might not even maintain their validity.

2.2 Motion Control as a Part of MeRMaID

The MeRMaID (Multiple-Robot Middleware for Intelligent Decision-making) architecture [5],

currently in use by the ISocRob team, was developed to meet the demands of robotic applications that

require cooperation between multiple robots, such as in the robotic soccer domain. It is a layered,

behavior-driven architecture that allows for cooperative behaviors to be performed. Without delving too

much into the details of its operation, which go beyond the scope of the present work, it is important to

describe the way through which the robot’s actuators are accessed.

The behaviors that the robot is intended to perform are decomposed into a set of Primitive

Actions, which are the basic tasks, like moving to a designated posture or intercepting the ball, which

cannot be further decomposed into simpler components. For each behavior that is triggered, a string

of these Primitive Actions is performed, in such a way that a single action is in charge of motion

control at any given instant. This scheme of operation is similar to the previously described switched-

parallel approach, and is thus subject to the most of its shortcomings from a control perspective.

7

Figure 4: Layout of the MeRMaID functional architecture.

Even though these Primitive Actions cannot be broken down into more basic tasks, they can be

decomposed into distinct control problems. Take, for instance, the tasks of moving to a foul-taking

position or to a foul-receiving position. While these tasks serve two different purposes, and are well-

distinguishable from the perspective of higher level components, they constitute the same problem of

moving the robot to a given reference, and thus are equivalent in their motion control requirements.

Similarly, the task of intercepting a moving ball is assigned to a single Primitive Action, but entails

diverse motion control problems that must be treated separately. To account for these situations, the

Primitive Actions resort to a set of Navigation Primitives, which constitute a common framework where

each control problem is addressed individually, and thus allows for code reusability and provides

(ideally) the same control performance for problems that share the same motion control requirements.

The structure of the Primitive Actions themselves then reduces to selecting the appropriate navigation

primitives for each situation and providing them with adequate references. Returning to the example of

the foul-taking and foul-receiving tasks, this means that both of these Primitive Actions make use of

the same navigation primitives, albeit with different goals.

This again defines the purpose of this work: to create a set of such navigation primitives that, by

solving the most common control problems that a robotic soccer player has to face, will allow these

robots to achieve their given tasks. While this constitutes an efficient way of addressing complex

tasks, it also presents a set of difficulties that must be dealt with in order to perform some form of

rigorous motion control. The most relevant of these is that the navigation primitives are not an active

8

part of the architecture itself; they are simply a generalized “control library” that the architecture, or in

this case the Primitive Actions, can use. This being the case, there is no way to know exactly at what

time instants will the navigation primitives be called from within the architecture itself. This is because

the internal frequency of execution of a Primitive Action is not fixed during the time it is active.

Moreover, the MeRMaID architecture does not currently support hard real time constraints. This poses

the most significant limitation on motion control in this architecture. It is verifiable, however, that the

frequency of execution of each Primitive Action does not suffer noticeable variations during the time

that it is active, even though it is unknown a priori. It is sufficient to assume, therefore, that whenever

the activation of a Primitive Action is requested by a behavior, it is put under a soft real time constraint.

It is then possible to obtain an estimate of the Primitive Action’s internal execution rate, by measuring

the elapsed time between consecutive iterations. This information is then used by the Navigation

Primitives to enforce the stability of the applied control techniques. It is imperative, however, to

analyze these control techniques in discrete-time, and, whenever possible, to maintain their

characteristics (e.g. pole locations) as a function of the sampling period, so as to provide similar

performance to different tasks, and to maintain their domain of application as wide as possible. It is

also important to provide updated information about the physical dimensions of the robot and other

relevant objects (such as the ball). In this case, even if these characteristics are modified, the

functionalities of each Primitive Action remain valid, and no other modifications are necessary inside

the architecture itself.

A final important detail should be mentioned: while in some tasks, such as following a trajectory, it

is convenient to address the robot’s inputs as accelerations (torque control), in others it is sufficient to

consider them as velocities (velocity control), like when driving the robot to a given posture. Instead of

converting these inputs to a single form (by explicitly integrating the acceleration inputs, for example),

the Primitive Actions allow for an abstraction of the desired control input type. These are sent in their

original form to the robot’s actuators, where its controllers then perform the most adequate

conversions, resulting in an overall reduction of the associated errors, since these controllers run at a

fixed rate, and making the system more robust to failures in the communications between the

architecture and the actuators.

9

3 Basic Motion Control

It is goal of this section to provide a framework for the unrestricted motion control of an

omnidirectional soccer robot, by concisely addressing the most basic operations that the mobile robot

must be able to perform in its environment. By unrestricted motion, it is meant the normal motion of

the robot when it is not required to interact with other objects, since these cases, as it will be seen in

Section 4, have to be dealt with separately. The basic actions under unrestricted motion are identified,

for this case, as the posture stabilization and the posture tracking problems. While in the former, the

robot is given only a static target posture in its environment as reference, which it must reach as fast

as possible and then maintain it, in the latter a reference trajectory is supplied to the robot, which it

must continuously follow. From these two general cases, a great variety of possible tasks may be

specified (e.g. moving to a specific posture in the field, following a teammate, keeping the robot turned

to the ball, etc.).

It is well known that, in the particular case of omnidirectional robots, the problem of controlling

the robot’s posture can be solved independently for its position and its orientation (see Annex A1 for

details). By doing so, the nonlinearities present in the robot’s kinematic and dynamic models are more

easily tractable since they only relate to its position components. The control for orientation is then

relatively straightforward through the normal tools for linear systems analysis. The above problems

can then be further divided into those of point stabilization, point tracking, and orientation control for

both static and moving references. Following this reasoning, the contents of this section are divided

according to each of these control problems. Section 3.1 deals with point stabilization; Section 3.2

presents a solution to point tracking; finally, Section 3.3 discusses orientation control.

3.1 Point Stabilization

Many solutions to the point stabilization problem for mobile robots are readily available in the

respective literature (e.g. [6],[7],[8],[4]), and for holonomic robots it can be solved, as it will be shown,

through static state feedback linearization. The main advantage of this approach over other possible

approaches such as Lyapunov-based methods (e.g. [9]), is that the behavior of the linearized system

can be modified at will and readily analyzed. On the downside, the kinematic and dynamic models of

the robot are assumed to be exact, which may introduce systematic errors into the closed-loop

system. In the case of simple and well-known systems, such as holonomic robots, this is admissible.

Consider the position kinematic model for an omnidirectional robot,

̇ = ࢜(ߠ)ܤ (3.1)

where = ݔ] ்[ݕ denotes the position of the robot in the world frame, ࢜ = ௫ݒ] ࢀ[௬ݒ is the linear

velocity of the robot’s chassis in the robot frame, and (ߠ)ܤ can be seen as a rotation matrix that

transforms two-dimensional vectors between these two frames (see Annex A1). It is assumed that the

robot’s position at each instant is estimated by the robot’s self-localization modules, with negligible

10

error. Given a reference position , and defining the position error as = − , the goal is then to

find a feedback control law ࢜ such that:

 The closed-loop system is asymptotically stable, i.e. lim௧→ஶ (ݐ) = 0;

 (0) = ⟹ (ݐ) = <ݐ∀ 0.

Proposition 3.1: (From de Wit et al. in [8]). A feedback linearizing control law ࢜ that solves the point

stabilization problem for omnidirectional robots is:

࢜ = −)ܣ(ߠ)ଵିܤ ((3.2)

for any Hurwitz matrix A.

Proof: For a non-null reference, the kinematic model (3.1) can be rewritten as,

݀

ݐ݀
൫− =൯ ࢜(ߠ)ܤ (3.3)

Applying (3.2), the closed-loop system becomes:

݀

ݐ݀
൫− =൯ −)ܣ ((3.4)

which is a linear system whose poles are at the eigenvalues of .ܣ ∎

The usefulness of feedback linearization for omnidirectional robots becomes evident from the

above, since from its well-known and invertible nonlinearities ,(ߠ)ܤ simple control laws such as (3.2)

can be obtained, and the behavior of the resulting linear system can be freely assigned by selecting

proper pole locations. This in turn helps reduce the problems associated with the saturation of the

robot’s actuators.

As it was discussed in Section 2.2, the implementation of continuous time approximations

such as the control law described by (3.2) are subject to serious limitations imposed by the varying

time-step at which the controls are calculated. It is then necessary to obtain a discrete-time equivalent

for the above feedback linearization procedure. Better still would be to allow the task designer to

specify the desired behavior of the linearized system through matrix ܣ in continuous-time, and have

the system emulate these specifications in discrete-time. To achieve this, the discrete-time equivalent

for the desired linearized system is first obtained. Though its derivations go beyond the scope of this

analysis, it is easily shown [10], that the discrete-time equivalent for a linear time-invariant system

̇ = ,ܣ preceded by a zero-order hold, and using a sample period ,ܶ is:

+݊) 1) = ்݁(݊) (3.5)

11

The discrete-time equivalent of the kinematic model (3.1) must also be obtained. To this end,

note that the displacement in the ݔ component of position, from ݐ to ,ݐ is given by:

(ݐ)ݔ = (ݐ)ݔ + න)ߠ)ܤ ௫ݒ(߬(݀߬

௧

௧బ

(3.6)

Through a change of variables, (3.6) becomes,

ܶ݇)ݔ + ܶ) = ܶ݇)ݔ) + න)ߠ)ܤ ௫ݒ(߬(݀߬

்ା்

்

(3.7)

Note that ௫ݒ is constant throughout this interval, and so (3.7) can be simplified by solving:

න)ߠ)ܤ)߬) ݀߬

்ା்

்

=
1

߱
න ቂ

cߠ −sߠ
sߠ cߠ

ቃ߱ ݀߬

்ା்

்

=
1

߱
න ቂ

cη −sη
sη cη ቃ߱ ݀η

ఏ(்ା்)

ఏ(்)

=
1

߱
�ቂ

sη cη
−cη sη ቃቚ

ఏ(்)

ఏ(்ା்)

=
1

߱
ቈ

sin(ߠ(݇ܶ) + ߱ܶ) − sin൫ߠ(݇ܶ)൯ cos(ߠ(݇ܶ) + ߱ܶ) − cos൫ߠ(݇ܶ)൯

−൫cos(ߠ(݇ܶ) + ߱ܶ) − cos൫ߠ(݇ܶ)൯൯ sin(ߠ(݇ܶ) + ߱ܶ) − sin൫ߠ(݇ܶ)൯
= ܶ݇)ߠ)߁),߱)

(3.8)

where the result ܶ݇)ߠ + ܶ) = ܶ݇)ߠ) + ߱ܶ was used, which constitutes a forward-difference

approximation. Then by using the following trigonometric relation:

sinܽ− sinܾ= 2 cos
ܽ+ ܾ

2
sin

ܽ− ܾ

2
(3.9)

Matrix ܶ݇)ߠ)߁),߱) then becomes,

ܶ݇)ߠ)߁),߱) =
2

߱ܶ
sin൬

߱ܶ

2
൰൦

cos ܶ݇)ߠ)) +
߱ܶ

2
) −sin ܶ݇)ߠ)) +

߱ܶ

2
)

sin ܶ݇)ߠ)) +
߱ܶ

2
) cos ܶ݇)ߠ)) +

߱ܶ

2
)

൪ܶ

= sinc൬
߱ܶ

2
൰ܲ(ߠ(݇ܶ),߱)ܶ (3.10)

The above derivations are analogous for the ݕ component, and so, again changing variables,

the discrete-time kinematic model for position can be expressed as,

ାଵ = + sinc൬
߱ܶ

2
൰ܲ(ߠ,߱)࢜ܶ (3.11)

12

where the subscript ݊ represents the iteration number. Note that the kinematic model (3.11) has the

following interesting properties:

Property 3.1: If ߱ → 0, then ାଵ → + .ܶ࢜(ߠ)ܤ

This is an intuitive result, since by interpreting (ߠ)ܤ as a rotation matrix that transforms vectors

from the robot frame to the world frame, the system would behave as ାଵ
ௐ =

ௐ + ࢜
ௐ ܶ, as expected,

since the robot’s orientation remains constant between sampling instants.

Property 3.2: If ࣓ → ࡷ
࣊

ࢀ
, with ࡷ ∈ ࡺ , or if ࣓ → ∞, then ା → .

The physical interpretation of a situation where ߱ = ܭ
ଶగ

்
is that the robot performs an integer

number of revolutions between two consecutive sampling instants. This implies that the robot’s

position kinematic model loses its controllability, since, regardless of the linear velocity of the robot, it

will always return to the same position at the end of each sampling interval. On the other hand, in the

theoretical situation where ߱ → ∞, it is intuitive that the robot would become unable to leave its

current position, and so controllability would also be lost. For most cases, however, it is unlikely that

the robotic system is capable of achieving the required angular velocity to incur in either of these

situations. For example, in the ISocRob robotic soccer platform, with a typical sampling interval

of ܶ = 0.04 s , the robot would require an angular velocity of ߱ ≅ 157 rad/s for this loss of

controllability to manifest itself. This largely exceeds the capabilities of the robot, which possesses a

maximum angular velocity of ߱ெ ≅ 15 rad/s.

In light of these results, and taking (3.5) as the desired linearized system, it is evident that a

discrete-time feedback linearizing control law ݒ is given by:

࢜ =
1

ܶ
൬sinc൬

߱ܶ

2
൰൰

ିଵ

ܲିଵ(ߠ,߱)(்݁ − (ܫ (3.12)

Note that this control law possesses singularities at the values of ߱ that cause the position

kinematic model to be uncontrollable. These singularities are assumed to be unreachable hereafter.

13

3.2 Point Tracking

Given a reference trajectory for position ,(ݐ) which can be thought of as a “moving” reference

point in the world frame, with a certain velocity and acceleration, (ݐ)̇ and ,(ݐ)̈ the objective of the

trajectory-tracking primitive is to have the error between the robot’s trajectory and the reference

trajectory converge to zero (preferably in an exponential manner). This reference trajectory is either

supplied beforehand by one of the robot’s planning modules, or it corresponds to the measurable

velocities and accelerations of an object moving in the robot’s environment (such as in the ball

interception task).

More formally, the goal is then to obtain a point-tracking feedback control law (ݐ)ࢇ such that:

 (ݐ)ࢇ and (ݐ) = (ݐ) − (ݐ) are bounded for all t;

 lim௧→ஶ (ݐ) = 0;

 (0) = (0) ⟹ (ݐ) = (ݐ) <ݐ∀ 0.

Like the point stabilization problem, the point (and posture) tracking problem has been subject to

intensive study in the field of robotics, inclusively for the robotic soccer environment [9],[11].

Maintaining the same philosophy as in the previous section, this problem can be solved through

feedback linearization as well. Consider the position dynamic model for the omnidirectional robot,

where the dependencies on time are implicit:

̇ = ࢜(ߠ)ܤ (3.13)

̇࢜ = ࢇ (3.14)

where ࢇ = [௫ܽ ௬ܽ]் is the linear acceleration of the robot’s chassis. By differentiating (3.13),

̈ = +ࢇ(ߠ)ܤ ࢜(ߠ)ܤ̇ (3.15)

In a similar manner to the previous approach, the problem now reduces to selecting the

control inputs (in this case, (ࢇ that will cancel out the nonlinearities in (3.15) and result in a linear

closed-loop system.

Proposition 3.2: (From de Wit et al. in [8]). A feedback linearizing point-tracking torque control law for

an omnidirectional robot is,

ࢇ = +࢜(ߠ)ܤ̇−൫(ߠ)ଵିܤ ̈ − ଵ߉) + −̇(ଶ߉ ൯ଶ߉ଵ߉ (3.16)

with,

14

ଵ߉ =
ଵߣ 0
0 ଵߣ

൨ (3.17)

ଶ߉ =
ଶߣ 0
0 ଶߣ

൨ (3.18)

and ଶߣ,ଵߣ > 0.

Proof: By substituting (3.16) in (3.15), it results that:

̈ + ଵ߉) + ̇(ଶ߉ + ଶ߉ଵ߉ = 0 (3.19)

Equation (3.19) is a stable linear differential equation, the dynamics of which can be freely

assigned by selecting proper values for ଵߣ and ,ଶߣ since the closed loop system’s poles are located at

ଵ,ଶݏ = .ଵ,ଶߣ− ∎

It is often useful to define ଵߣ = ଶߣ , since the system then becomes critically damped. A

discrete-time control law can be sought by finding the discrete equivalent of equations (3.13), (3.14),

and (3.15), and solving again for .ࢇ

Proposition 3.3 A discrete-time feedback linearizing control law for the point tracking problem is:

ࢇ = −
ିଵ࢜
ܶ

+
1

ܶଶ
൬sinc൬

߱ܶ

2
൰൰

ିଵ

ܲିଵ(ߠ,߱)ቀ− + ାଵ
+ (݁ି௸భ் + ݁ି௸మ்) − ݁ି(௸భା௸మ)்ିଵቁ

(3.20)

where the involved variables share the same meaning as in Section 3.1.

Proof: Equation (3.19) can also be written as:

൬
݀

ݐ݀
− ଵ൰൬߉

݀

ݐ݀
− ଶ൰߉ = 0 (3.21)

In discrete time, an approximation of the posture dynamic model for position is represented by:

ାଵ = + sinc൬
߱ܶ

2
൰ܲ(ߠ,߱)࢜ܶ (3.22)

࢜ = ିଵ࢜ + ܶࢇ (3.23)

Equation (3.22) has been derived in Section 3.1. It is only exact in this context if ݒ is held

constant throughout each time step, otherwise the matrixܲ would also depend on the angular

acceleration of the robot, making the problem both mathematically and computationally demanding. If

the robot’s hardware is performing torque control on its wheels at a higher frequency than that at

15

which equation (3.22) is used, some approximation error is incurred. Similarly, equation (3.23) is the

backward-difference approximation of (3.14).

According to the exact discretization method proposed by Kawarai in [12], differential

operators of the form ቀ
ௗ

ௗ௧
− ቁߙ can be transformed into discrete-time as follows:

൬
݀

ݐ݀
− (ݐ)ݔ൰ߙ → (1 − ݁ఈ்߶ିଵ)ݔ (3.24)

where ߶ is the state transition matrix, such that:

ାଵݔ = ݔ߶ (3.25)

Applying the transformation described in (3.24), the desired linearized system (3.19) becomes:

−ାଵ (݁ି௸భ் + ݁ି௸మ்) + ݁ି(௸భା௸మ)்ିଵ = 0 (3.26)

Also, by combining (3.22) and (3.23):

ାଵ = + sinc൬
߱ܶ

2
൰ܲ(ߠ,߱)࢜ିଵܶ+ sinc൬

߱ܶ

2
൰ܲ(ߠ,߱)ࢇܶ

ଶ (3.27)

Using (3.26) and (3.27), and solving for :ࢇ

ࢇ = −
ିଵ࢜
ܶ

+
1

ܶଶ
൬sinc൬

߱ܶ

2
൰൰

ିଵ

ܲିଵ(ߠ,߱)ቀ− + ାଵ
+ (݁ି௸భ் + ݁ି௸మ்) − ݁ି(௸భା௸మ)்ିଵቁ

∎

It should be noted that this control law is also susceptible to the singularities discussed in

Section 3.1. The conditions in which (3.20) should be used instead of the continuous-time

approximation depend on the time step ܶ and, in the cases where target tracking is intended (such as

ball interception), on the motion of the target object. If ܶ is not fixed, and if the average time step, തܶ, is

sufficiently small, and the values for ଵߣ and ଶߣ are selected accordingly (< 1/(10 തܶ)), then the control

law defined by (3.16) is preferred since it avoids the feed-forward of ାଵ
, which may be a source of

error. If ܶ is large, then the closed loop system’s poles have to be sufficiently slow so that the

continuous-time approximation still holds, which results in an overall slow transient response. Under

these conditions, the discrete control law (3.20) provides more reliable control. However, if ܶ is not

held constant, then the discretization operation will lose its validity, and may result in unexpected

behavior. Results are shown for both of these approaches in Chapter 7.

16

Note that a system using these control laws may experience overshoot for some initial

conditions (0) and .(0)̇ This is undesirable for most situations, and so the relationship between

these initial conditions, pole selection, and the resulting overshoot of the system, must be described.

Consider the situation where ଵߣ = ଶߣ = .ߣ For each component ݁ of , it is verified, according to

(3.19), that:

݁̈+ ߣ2݁ ̇ + =ଶ݁ߣ 0 (3.28)

It can be shown that, in order for overshoot to occur, then (ݐ݁) = 0 must be verified in finite

time[13], and that for this to occur, one must have:

>ߣ −
݁̇(0)

(݁0)
݂݅ (݁0) > 0 (3.29)

<ߣ −
݁̇(0)

(݁0)
݂݅ (݁0) < 0 (3.30)

Since the initial conditions are readily available, this implies that, by proper selection of ,ߣ

overshoot can be avoided altogether in most situations.

3.3 Orientation control

By treating orientation and position control separately, the orientation control problem now

becomes simple, since both its kinematic and dynamic models consist solely of chained integrators:

ߠ̇ = ߱ (3.31)

=ߠ̈ ߙ (3.32)

At each iteration, an estimate of the robot’s orientation, ,෨ߠ is supplied by its self-localization

procedures, but for this purpose it will be assumed that ෨ߠ = .ߠ The robot is then given a reference

orientation ߠ . Depending on the task at hand, it may be necessary to provide either velocity or

torque control for orientation, such as for the posture stabilization and posture tracking problems,

respectively. Adequate compensation for each of these cases can be found through direct digital

design, as it will be seen in 3.3.1 for velocity control and 3.3.2 for torque control.

3.3.1 Velocity Control

The transfer function in continuous-time for the kinematic orientation model is, as it can be

readily seen through (3.31):

(ݏ)௩ܩ =
1

ݏ
(3.33)

17

In discrete-time, this corresponds to:

(ݖ)௩ܩ = (1 − ቊ߄(ଵିݖ
(ݏ)௩ܩ

ݏ
ቋ= ܶ

1

−ݖ 1
(3.34)

where ߄ represents the Z-transform. The system is marginally stable, similarly to its continuous-time

counterpart, but through the application of a simple proportional controller, the single closed-loop pole

can be placed anywhere on the real axis inside the unit circle, as it is seen through the discrete root-

locus of ,(ݖ)௩ܩ shown in Figure 5. Since the reference in these cases is constant (or so it is intended),

and the sensors used to determine the robot’s orientation are not particularly noisy, the only design

specification is that the system should be as fast as possible. This would correspond, evidently, to

placing the closed loop pole at =ݖ 0. However, the nonlinearities introduced by the robot’s actuators

(that have a certain maximum velocity and acceleration) would not allow the robot to respond

sufficiently fast, and would likely result in overshoot. Therefore, the closed loop pole must be moved

further to the right side of the complex plane.

Figure 5: Root-Locus for the discrete-time kinematic model for orientation

K

Localization

-
w

+
1z

T

~

r

Gv(z)

e

Figure 6: Block diagram for velocity-based orientation control

18

The necessary gain ܭ to move the closed loop pole to =ݖ ,ߙ with 0 ≤ ߙ < 1, can then be

obtained by determining the characteristic equation of the closed loop system:

1 + ܭ
ܶ

−ݖ 1
= 0 ⇔ −ݖ 1 + ܶܭ = 0 (3.35)

This, in turn, implies, for =ݖ :ߙ

ܭ =
1 − ߙ

ܶ
(3.36)

The difference equation that must then be implemented in the respective navigation primitive

is:

߱ =
1 − ߙ

ܶ ݁ (3.37)

Where ݁ = ൫ߠ − .෨൯ߠ For the particular case of orientation control on the robotic platform

used by the ISocRob team, it was experimentally verified that ߙ = 0.89 provides the fastest possible

response without causing overshoot.

3.3.2 Torque Control

For this case, the continuous-time transfer function of the robot’s dynamic model for

orientation (3.32) is:

(ݏ)ܩ =
1

ଶݏ
(3.38)

Its corresponding equivalent in discrete-time is:

(ݖ)ܩ = (1 − ቊ߄(ଵିݖ
(ݏ)ܩ

ݏ
ቋ=

ܶଶ

2

+ݖ 1

−ଶݖ +ݖ2 1
(3.39)

Unlike the previous case, the system quickly becomes unstable through the application of

proportional feedback, as it is shown in Figure 7. To overcome this problem, lead compensation is

added, of the form:

(ݖ)ܦ = ܭ
−ݖ ܾ

ݖ
(3.40)

19

Figure 7: Root-Locus for the discrete-time dynamic model for orientation

Figure 8: Root-locus for the compensated orientation dynamic model (b=0.86).

12

1

2 2

2

zz

zT

~

r e z

bz
K

Figure 9: Block diagram for torque-based orientation control

The inclusion of this compensation term yields a closed-loop system that is stable for properly

selected values of ܭ and .ܾ The main design difference between velocity and torque control is that,

20

while in the former it was assumed that the references were constant over time, in the latter the

system must be prepared to follow orientation references with constant velocity (ramp inputs) and

references with constant acceleration (parabola inputs). In this case, noise rejection is also an

important factor, since the reference is sometimes taken as the relative orientation to a certain object

in the field (when one wants to keep the robot turned to the ball during interception, for example), and

the subsystems that provide these references may be subject to noise. As a consequence, the

selection of the parameter ܾ is not straightforward: by moving the zero closer to the origin, the system

has greater noise rejection at higher frequencies, but its phase margin is reduced, since the

breakaway point in the locus would no longer exist, and the system would have a complex pair of

poles; by moving the zero farther to the right, the system becomes slower in the presence of the

nonlinearities of the robot’s actuators, and the steady-state error to references with constant

acceleration increases. A proper value must then be determined for each specific physical system

under study. For the particular case of the ISocRob robots, after some trial and error, a suitable value

was found at ܾ= 0.86. The corresponding root-locus is shown in Figure 8. For this particular value

of ,ܾ a value of ܭ is selected that is as high as possible while maintaining an acceptable phase margin.

This corresponds to the case where two of the closed loop system’s poles are located at the break-

away point in the locus, =ݖ 0.533, and a third real pole is located at =ݖ 0.703. Then, by obtaining the

closed loop system’s characteristic equation for and matching the desired locations of the poles (the

process is omitted since it follows the same reasoning as in Section 3.3.1, but the algebraic details are

rather strenuous and do not contribute to this work), it can be shown that the relationship between ܭ

and ,ܶ follows:

ܭ =
ߟ

ܶଶ
(3.41)

where ߟ is dependent on the selected value for ܾ and the desired closed loop poles. In this case,

=ߟ 0.661. The difference equation that must be implemented for this controller can be obtained by

noting that:

(ݖ)ܦ =
(ݖ)ܣ

(ݖ)ܧ
=

ߟ

ܶଶ
−ݖ ܾ

ݖ
(3.42)

This implies that:

ߙ =
ߟ

ܶଶ
(݁ − ܾ ݁ିଵ) (3.43)

21

3.4 Dealing with Actuator Saturation Problems

One of the biggest obstacles to rigorous high-speed motion control is dealing with the

limitations of the robot’s actuators. While, for the case of omnidirectional robots, the process of

obtaining motion control laws is simple since its motion models are easily manipulated, it is often left

unconsidered, from a theoretical standpoint, that the nonlinearities introduced by the robot’s actuators

may affect the overall performance of those laws. Suppose that the robot’s actuators have an absolute

maximum limit for angular velocity, ߱ெ
 , and for acceleration, ெߙ

 , where the superscript is used to

distinguish these quantities from the angular velocity and acceleration of the robot’s chassis.

In other words, it is imposed by the actuators that:

|߮̇| ≤ ߱ெ

|߮̈| ≤ ெߙ
 , ݅= 1,2,3

(3.44)

This is in an approximation, since, in reality, the maximum acceleration that each actuator is

able to display is dependent on the instantaneous angular velocity of that actuator. However, to avoid

damaging the actuators by frequently driving them to their actual limits in acceleration, a soft-limit is

imposed, which can be set to a constant value.

The linear and angular velocity of the robot chassis can then be related to the angular

velocities of the actuators (see Annex A1) by:

ݎ

߮̇ଵ
߮̇ଶ
߮̇ଷ

൩=

⎣
⎢
⎢
⎢
⎡

0 −1 ܮ

−
√3

2

1

2
ܮ

√3

2

1

2
⎦ܮ
⎥
⎥
⎥
⎤

ቈ
௫ݒ
௬ݒ
߱
= ቈܬ

௫ݒ
௬ݒ
߱
 (3.45)

In these conditions, it is evident that there always exists a set of initial conditions that, through

the application of the motion control laws proposed in the previous sections, would always tend to

violate the saturation limits of some of the actuators. If, for example, the corresponding input vector

௫ݒ] ௬ݒ ߱]் would require all of the actuators to spin in the same direction, albeit with different

desired angular velocities, then upon saturation of all the wheels, the robot’s chassis would simply

spin in place with a certain maximum angular velocity, and it would therefore be prevented from

reaching its target postures or trajectories. Indiveri et al. proposed in [9] a method to account for these

limits, by assigning a finite “task capacity” to each individual input sent to the actuators, so that the

weighted sum of these inputs never exceeds a certain maximum admissible velocity of the robot’s

chassis (a maximum norm of the control input vector), which supposedly would lead to actuator

saturation. This however, is only an approximation: through (3.45), it can be seen that the relationship

between the angular velocity of each actuator and the norm of the desired control input vector is non-

linear. This, in turn, means that there are some directions along which the input vector is allowed to

have a greater norm before at least one of the actuators enters saturation. Also, in their work, Indiveri

22

et al. did not consider the presence of a saturation limit for acceleration. The present work will then

base itself on the approach taken in [9], but will try to address its shortcomings.

The main line of reason that will be followed is that, in the presence of certain desired

velocities, the angular velocity of each actuator must be altered so that the robot still maintains its

desired functionality.

Let (3.45) be rewritten as:

ݎ

߮̇ଵ
ௗ

߮̇ଶ
ௗ

߮̇ଷ
ௗ

=

⎣
⎢
⎢
⎢
⎡

0 −1

−
√3

2

1

2

√3

2

1

2 ⎦
⎥
⎥
⎥
⎤

ቂ
௫ݒ
௬ݒ
ቃ+

ܮ
ܮ
ܮ
൩߱ = ௩ቂܬ

௫ݒ
௬ݒ
ቃ+ ఠ߱ܬ (3.46)

where [߮̇ଵ
ௗ ߮̇ଶ

ௗ ߮̇ଷ
ௗ]் represents the “desired” angular velocities for each of the actuators. From

these, let ߮̇ெ
ௗ denote the component with the largest absolute value. At least one of the actuators will

be saturated if (3.44) is not verified, i.e., if ห߮ ̇ெ
ௗ ห> ߱ெ

 . In these conditions, by defining a scale

factor ܭ as:

ܭ =
߱ெ

ห߮ ̇ெ
ௗ ห

(3.47)

By applying this scale factor:

߮̇ଵ
߮̇ଶ
߮̇ଷ

൩= ܭ

߮̇ଵ
ௗ

߮̇ଶ
ௗ

߮̇ଷ
ௗ

 (3.48)

It results that the so obtained angular velocities satisfy |߮̇| ≤ ߱ெ
 , and that the associated, “real”

velocities displayed by the robot are also scaled down by ,ܭ relative to their desired values. This

means that the form of the robot’s trajectory is maintained, even though the robot will pursue this

trajectory in a slower manner than it is desired. The available control effort of the robot’s actuators is

distributed equitably through the linear and angular velocity components of the robot. Depending on

the required task, it may be advantageous to give priority to one of these components over the other.

This may happen, for example, in tasks where the robot is required to reach a desired position as fast

as possible, but its orientation is unimportant – in this case its linear velocity would be given priority.

To account for these cases, three different “priority modes” are distinguished: the above procedure,

that conserves the form of the robot’s trajectory but may result in a slower required time to its target,

constitutes a no-priority situation; additionally, priority may be given to either the robot’s linear velocity

or its angular velocity.

Let ߮̇
௩ and ߮̇

ఠ represent the contributions to the angular velocity of the actuators by,

respectively, the robot’s linear and angular velocities:

23

߮̇ଵ
௩

߮̇ଶ
௩

߮̇ଷ
௩
=

1

ݎ
௩ቂܬ

௫ݒ
௬ݒ
ቃ (3.49)

߮̇ଵ
ఠ

߮̇ଶ
ఠ

߮̇ଷ
ఠ
=

1

ݎ
ఠ߱ܬ (3.50)

With these definitions, (3.46) becomes,

߮̇ଵ
ௗ

߮̇ଶ
ௗ

߮̇ଷ
ௗ

=

߮̇ଵ
௩

߮̇ଶ
௩

߮̇ଷ
௩
+

߮̇ଵ
ఠ

߮̇ଶ
ఠ

߮̇ଷ
ఠ
 (3.51)

where it can be seen that each of these components may be treated individually. When priority is

given to linear velocity, the largest value of ߮̇
௩ is determined, ߮̇ெ

௩ . If |߮̇ெ
௩ | ≥ ߱ெ

 , then all of the

control effort must be assigned to linear velocity, i.e. ߮̇
ఠ = 0, and the desired values of ߮̇

௩ are scaled

down according to ܭ = ߱ெ
 /|߮̇ெ

௩ |, in a process similar to the no-priority situation. If |߮̇ெ
௩ | <

߱ெ
 , then the actuators will not enter saturation through the application of the desired linear velocity,

and so the remaining control effort may be allocated to the robot’s angular velocity. In this case, the

values of ߮̇
௩ are left in their original form, and those of ߮̇

ఠ must be scaled down. ܭ then becomes:

ܭ =
߱ெ
 − |߮̇ெ

௩ |

ห߮ ̇ெ
ௗ ห− |߮̇ெ

௩ |
(3.52)

The term ߱ெ
 − |߮̇ெ

௩ | represents the available control effort. The effective angular velocities

of the actuators are then:

߮̇ଵ
߮̇ଶ
߮̇ଷ

൩=

߮̇ଵ
௩

߮̇ଶ
௩

߮̇ଷ
௩
+ ܭ

߮̇ଵ
ఠ

߮̇ଶ
ఠ

߮̇ଷ
ఠ
 (3.53)

For angular velocity priority, the situation is reversed. If |߮̇ெ
ఠ | < ߱ெ

 , then,

ܭ =
߱ெ
 − |߮̇ெ

ఠ |

ห߮ ̇ெ
ௗ ห− |߮̇ெ

ఠ |
(3.54)

In this case,

߮̇ଵ
߮̇ଶ
߮̇ଷ

൩= ܭ

߮̇ଵ
௩

߮̇ଶ
௩

߮̇ଷ
௩
+

߮̇ଵ
ఠ

߮̇ଶ
ఠ

߮̇ଷ
ఠ
 (3.55)

24

The above procedures would account for the angular velocity limits of the robot’s actuators.

However, it is also important to consider the effect of the angular acceleration limits. To see this,

suppose that the robot’s actuators can exhibit a large angular velocity, but a reduced angular

acceleration. Also, suppose that the robot is initially stopped, and the velocity input sent to the

actuators implies ߮̇> ,ܭ where ܭ is some positive constant, for all of the actuators. In this situation,

before one of the actuators reaches its desired value for ߮̇, they will all display equal angular velocity

values, since they all accelerate by the same maximum amount ெߙ
 . This would cause the robot to

spin with ௫,௬ݒ = 0 during the initial instants of its motion.

The relation between the desired accelerations of the robot’s chassis and the angular

accelerations of the actuators is:

߮̈ଵ
߮̈ଶ
߮̈ଷ

൩=
1

ݎ
ቈܬ

௫ܽ

௬ܽ

ߙ
 (3.56)

Since this relation is similar to what was seen for the case of velocity inputs, all of the above

derivations can be applied to treat ߮̈, also considering the possibility of assigning priority to the

different components of the robot’s acceleration. Note, however, that even if no priority is specified,

there is no guarantee that the robot’s trajectory is preserved.

4 Task-Specific Motion Control

In the robotic soccer domain, some tasks cannot be solved efficiently through the

application of the motion control techniques presented i

form of interaction with the soccer ball, since in this case the robot must abide by some restrictions on

its motion, imposed by the physical dimensions of b

interaction is successful. These restrictions, in turn, invalidate the assumption of unconstrained motion

of the soccer robot, and have to be dealt with specifically depending on the type of interaction that t

robot must achieve. Two major tasks are identified in this sense:

 Ball interception, where the robot is required

 Dribbling (or ball moving)

maintaining the ball

This chapter is organized as follows: S

that will be used in the subsequent tasks;

rolling ball; finally, Section 4.3

transport of the ball (dribbling).

4.1 Modelling the Object

Figure 10: Diagram showing the forces involved in the motion of the ball.

Whenever interaction between a robot and an object is performed through motion control, it is

often necessary to possess not only a

question. This model describes how the motion of the object is

arising from its interaction with the robot.

The object in question, in the robotic soccer setting, is

plane, with position = ݔ] ்[ݕ

Specific Motion Control

In the robotic soccer domain, some tasks cannot be solved efficiently through the

ontrol techniques presented in Chapter 3. Most of these tasks involve some

form of interaction with the soccer ball, since in this case the robot must abide by some restrictions on

its motion, imposed by the physical dimensions of both the robot and the ball, to ensure that the

These restrictions, in turn, invalidate the assumption of unconstrained motion

of the soccer robot, and have to be dealt with specifically depending on the type of interaction that t

robot must achieve. Two major tasks are identified in this sense:

, where the robot is required to gain possession of the ball;

ribbling (or ball moving), where the robot must traverse the field of play while

maintaining the ball under its possession.

apter is organized as follows: Section 4.1 introduces the basic model of the soccer ball

used in the subsequent tasks; Section 4.2 describes a procedure to intercept a

describes the motion control techniques that are used during

Object

: Diagram showing the forces involved in the motion of the ball.

Whenever interaction between a robot and an object is performed through motion control, it is

often necessary to possess not only a dynamic model of the robot itself, but also of the object in

describes how the motion of the object is affected when subject to the forces

arising from its interaction with the robot.

The object in question, in the robotic soccer setting, is a ball that is rolling on a non

]் on a fixed frame. Its basic equations of motion state that:

+ࢌ ࢌ = ݉ ̈

25

In the robotic soccer domain, some tasks cannot be solved efficiently through the isolated

. Most of these tasks involve some

form of interaction with the soccer ball, since in this case the robot must abide by some restrictions on

oth the robot and the ball, to ensure that the

These restrictions, in turn, invalidate the assumption of unconstrained motion

of the soccer robot, and have to be dealt with specifically depending on the type of interaction that the

to gain possession of the ball;

, where the robot must traverse the field of play while

introduces the basic model of the soccer ball

describes a procedure to intercept a freely

describes the motion control techniques that are used during the

: Diagram showing the forces involved in the motion of the ball.

Whenever interaction between a robot and an object is performed through motion control, it is

model of the robot itself, but also of the object in

affected when subject to the forces

a ball that is rolling on a non-inclined

otion state that:

(4.1)

26

where ݉ is the mass of the ball, ࢌ is an external force applied through the ball’s center of mass, and

ࢌ is the friction between the ball and the surface. The friction is proportional to the weight of the ball,

and its direction is contrary to the velocity of the ball’s center of mass ࢜ = ̇ = ௫ݒ] :்[௬ݒ

ࢌ = ݉ܥ− ݃൫cos ௫ࢋ(ߙ) + sin ௬൯ࢋ(ߙ) (4.2)

where ߙ = atan2൫ݒ௬,ݒ௫൯, ܥ is the coefficient of rolling resistance and ݃ = 9.81 ݉ ଶିݏ . ܥ is

approximately constant in the range of feasible velocities.

Rewriting (4.1) in state-space form, where the state of the ball is] :்[࢜

൦

ݔ̇
ݕ̇
௫ݒ̇
௬ݒ̇

൪=

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

ݔ
ݕ
௫ݒ
௬ݒ

+
1

݉

0 0
0 0
1 0
0 1

௫݂

௬݂
൨+

1

݉

0 0
0 0
1 0
0 1

ቈ
݂௫

݂௬

 = ቂ
1 0
0 1

0 0
0 0

ቃ

ݔ
ݕ
௫ݒ
௬ݒ

 (4.3)

Note that, in some tasks where the interaction forces with the ball must be controlled, ࢌ is

accessible, but ࢌ is not, and of the latter only an estimate can be obtained.

4.2 Moving Object Interception

Consider now the set of problems where a robot must intercept a moving object, in such a way

that the interaction between the robot and the object when contact occurs must respect some dynamic

constraints. The interception task is then to match the position and velocity (and acceleration, if

applicable) of the target object, in the shortest possible time. This time constraint is a fundamental

difference from situations involving stationary objects, especially for robotic manipulators, since there

is a limited time window in which the target object is passing through the manipulator’s workspace. For

mobile robots, the environment’s configuration or the limitations of the robot’s actuators could also

mean that the interception of the target object would become impossible after some time.

Depending on the task at hand, the target object may be classified as a slow-maneuvering

target, in which case its motion is predictable, such as in an industrial environment, or a fast-

maneuvering target, implying that long-term prediction is hard to achieve. Targets of the latter type are

usually free-flying or may be subject to random deviations in trajectory.

Suitable solutions for systems handling slow-maneuvering targets include the Prediction,

Planning and Execution (PPE) techniques, such as [14], in which an anticipated rendezvous point is

calculated based on the predicted path of the object, and a trajectory is then obtained that would drive

the robot to this point. Active Prediction, Planning and Execution (APPE) tries to reduce the effect of

prediction errors by continuously updating the rendezvous point and the robot’s trajectory as

necessary [15],[16]. These solutions present near-optimal results in the required time for interception.

27

For fast-maneuvering targets, however, it may not be possible to obtain a reliable long-term

prediction of the target’s motion. Possible solutions in this case include tracking algorithms that

continuously try to minimize some measure of error between the robot and the target object. The

application of visual servoing is a widely used example, such as in [17],[18], either by Image-Based

Visual Servoing (IBVS), where the images produced by a camera are searched for a set of features,

and the displacement to their expected location at the time of interception is measured; or by Position-

Based Visual Servoing, (PBVS) where the posture of the robot (or of the robot’s end-effector in the

case of a manipulator) is estimated from the received images and the error to the desired posture is

then used. Manchester et al. applied these techniques to the interception of moving targets by

nonholonomic mobile robots in [19]. These algorithms are normally sub-optimal with respect to time.

Fast-maneuvering target interception may also be accomplished through the application of guidance

laws, which have wide application in homing missile control (e.g. [20],[21], [22]) and are designed to

achieve time-optimal interception. These guidance laws do not try to match the velocity of the target at

the moment of interception nor do they have the capability, by themselves, to satisfy physical

constraints imposed on the interaction with the target. Therefore, when implemented in robotic

interception systems, they require the application of another tracking algorithm in the vicinity of the

target object to overcome these limitations.

In the robotic soccer environment, such a problem of intercepting a moving object occurs

whenever a robot is required to gain possession of the soccer ball, whether it is freely rolling on the

field of play, or being controlled by a robot of the opposite team. In this sense, the target is considered

as fast-moving, since its trajectory may change unexpectedly due to collision with other objects in the

environment, or simply from frictional forces at work that can distort its motion.

The most common approach to ball interception in the robotic soccer environment is through

the application of neural networks and learning algorithms [23],[24], [25]. These techniques require a

reduction in the dimensionality of the ball interception problem, and a large number of training

episodes, some of which have to be performed in the physical robotic system (as opposed to

simulation procedures), to achieve acceptable ball interception under most conditions. The main

advantage of these techniques is that the overall system does not require modelling, and so the

complexity of the problem is reduced. However, the resulting behavior of the system, after the training

process, is hard to analyze. Also, for long-term robotic projects that are subject to frequent changes,

this implies that the training process would often have to be repeated, and some part of it even

individually for each system in the robotic soccer team.

Other solutions for robotic soccer rely on fast visual tracking [26], that are heavily dependent

on the robot’s hardware, or prediction techniques [27],[25], that, as discussed above, do not account

for unexpected changes in the ball’s motion due to collision, for example.

The proposed solution to this problem is based on the work done by Mehrandezh et al. in

[28],[13],[29], which was applied in the context of fast-moving object interception for industrial

manipulators, and relies on a hybrid composition of trajectory-tracking and proportional navigation

28

techniques to achieve near-optimal interception. This particular implementation also makes use of

obstacle avoidance to ensure that the robot does not collide with the ball before it is prepared to

capture it.

4.2.1 Overview of the Solution

From this point onward, the focus will be put, without loss of generality, on the particular case

where a soccer ball is freely rolling on the field of play. It is assumed that the robot has, at each

instant, information about the ball’s position, velocity and acceleration. Given arbitrary initial conditions

for both the robot and the ball, the robot must then achieve a posture such that the ball would be

between its flippers (see Section 6) and in contact with robot’s kicker mechanism – the robot is then

said to have possession of the ball – and apply the necessary force to stop the ball. In its motion, the

robot must also avoid any obstacles that are present in the environment.

Figure 11: Representation of the ball interception task.

The control architecture is shown in Figure 12. A ball-localization sensor, the workings of

which are not relevant here, supplies periodic information about the ball’s position and velocity to the

navigation primitives. The ball’s acceleration is not accessible, and therefore an estimate based on the

friction acting on the ball is also supplied; a posture is then calculated which satisfies the physical

restrictions of both the ball and the robot. This posture, along with the ball’s velocity and acceleration,

defines a set of possible “interception trajectories”, which are those that result in a successful capture

by the robot. One such trajectory is obtained, and serves as reference to separate position and

orientation control subsystems. For orientation control, the system described in 3.3 is used in torque-

control form, since, as it will be seen, it is convenient to supply the controls for the robot as linear and

angular accelerations during this task. As for position, either a point-tracking module or a proportional

navigation guidance (described in 4.2.4) module is used, according to a set of restrictions that must be

satisfied for each of them. The resulting control input for position is then passed through a ball-

avoidance module so as to assure that no undesired collisions result. The applied obstacle avoidance

algorithm is discussed in Section

remaining modules is discussed in detail.

Ball
Localization

Calc. of
desired

Interception
trajectory

Dynamic
Model of the

Ball

Estimate of the
accel. of the ball

Position and velocity
of the ball

Reference
trajectory

Figure 12: Control architecture for the

Figure 13: An example of an admissible trajectory, in the world frame, for

avoidance module so as to assure that no undesired collisions result. The applied obstacle avoidance

ection 5.4 for moving obstacles. In the following sections each of the

remaining modules is discussed in detail.

Proportional
Navigation
Guidance

Point
Tracking

Orientation
Control

Control
signal

conditioning

Control
signal

selection

Position Control

Reference
trajectory

: Control architecture for the ball interception system

an admissible trajectory, in the world frame, for the ball interception

problem.

29

avoidance module so as to assure that no undesired collisions result. The applied obstacle avoidance

for moving obstacles. In the following sections each of the

Control

selection

Ball
Avoidance

Linear
accel.

Angular
acceleration

ball interception system.

the ball interception

30

4.2.2 Obtaining the Desired Interception Trajectory

Regardless of the algorithm which is used to solve the ball interception problem, there is a set of

restrictions imposed by the physical dimensions of both the robot and the ball that must be verified at

the moment of interception. Let the position of the robot in the world frame be defined as =

]
் ்[ߠ , where = ݔ] ்[ݕ , and the position of the object, in this case the ball, as =

ݔ] .்[ݕ In this notation, a trajectory described by the robot is represented by ,(ݐ) and is assumed

twice differentiable. Successful interception will be attained by the trajectories (ݐ) ߳ ܶ௧, where ܶ௧

represents the set of all trajectories that satisfy, at some time instant :ݐ

1. ฮ൫ݐ൯− =൯ฮݐ൫ ܴ, where ܴ is the distance between the center of the robot and the ball

whenever ball possession is achieved;

2. ฮ̇൫ݐ൯− ≥൯ฮݐ൫̇ ,௩ߜ where ௩ߜ is a constant related to the maximum change in momentum

that the ball may be subjected to without escaping;

3. ฮ̈൫ݐ൯− ≥൯ฮݐ൫̈ ,ߜ where ߜ is a constant representing the maximum resultant force that

may act on the ball for it to remain under possession, taking into account the effect any

actuators that are exerting forces upon the ball;

4. หߠ൫ݐ൯− ≥൯หݐ൫ߣ ,ఏߜ where (ݐ)ߣ = ݐܽܽ ݊2൫ݕ(ݐ) − (ݐ)ݔ,(ݐ)ݕ − ,൯(ݐ)ݔ as denoted in Figure

13, and ఏߜ represents any “slack” that may exist between the robot’s flippers and the ball

during ball possession.

Given the particular configuration of Middle-Sized League soccer robots, an intuitive subset of ܶ௧

are the trajectories in which the robot is positioned along the ball’s immediate direction of motion at the

moment of interception, in order to facilitate ball capture, since its linear momentum is opposed by the

robot. An example of such a trajectory is depicted in Figure 13, and is divided into two distinct

segments, each with specific motion control requirements:

(S-I): The robot must intercept a point I along the ball’s path, which is assumed to be linear in that

interval, in the shortest possible time. It is also convenient (although not strictly necessary) to impose

that the robot should match the ball’s velocity and acceleration at this point. The robot then satisfies, at

some time instant :ݐ

 (ݐ)‖ − ‖(ݐ)࢈ = ݀, where ݀> ܴ is the distance between the center of the ball and

point I, and should be selected for safety reasons. It is also clear that ݀directly influences

the total time required for interception, and should be kept as small as possible;

 (ݐ)̇‖ − ‖(ݐ)࢈̇ ≅ 0;

 (ݐ)̈‖ − ‖(ݐ)࢈̈ ≅ 0.

Since the robot is omnidirectional and the control of its orientation can be accomplished

independently from its position, as seen before, the orientation control primitives described in 3.3 can

be used to satisfy condition 4 throughout the motion of the robot, by using (ݐ)ߣ as reference.

Successful interception then reduces to a problem of matching the desired trajectory for position (ݐ)

defined by the motion of point I. From the above, this trajectory, designated as interception trajectory,

can be related to (ݐ) as:

31

(ݐ) = (ݐ) + ݀
cos (atan2(̇ݕ(ݐ), ((ݐ)ݔ̇

sin (atan2(̇ݕ(ݐ), ((ݐ)ݔ̇
൨ (4.4)

Since the ball’s path was assumed linear, it is also evident that:

(ݐ)̇ = (ݐ)̇ (4.5)

(ݐ)̈ = (ݐ)࢈̈ (4.6)

The necessary quantities ,(ݐ)) (ݐ)̇ and ((ݐ)̈ are assumed to be known at each instant (in the

case of the ISocRob robots, (ݐ) and (ݐ)̇ are supplied by the sensors of each robot, while an

estimate of (ݐ)̈ is obtained through the dynamic model of the ball). In practice, this information will

evidently contain some amount of error. This does not, however, prevent the successful operation of

the algorithm (see Section 7.4), since, as the distance between the robot and the ball decreases, the

amount of noise involved in these measurements is usually reduced.

(I-F): The robot then approaches point F in such a way that conditions 1-3 of the above are

satisfied at the interception instant .ݐ If point I is sufficiently close to the ball, this can be achieved

through constant negative acceleration. As before, condition 4 is satisfied by the orientation controller.

This interception strategy is similar to a common approach in the control of robotic manipulators,

where the end effector is first brought to the vicinity of the manipulated object as fast as possible

(coarse control), and from there it approaches the object in a slower manner in which the interaction

forces have priority (fine control). In their work, Mehrandezh et al. have applied a similar strategy [13].

Since the control if the robot is straightforward during the final stage (I-F) of interception, the

subsequent sections address the motion control requirements of the first stage (S-I).

4.2.3 Motion Control Requirements of an Interception Task

The problem of matching a given moving reference position (ݐ) during the first stage (S-I) of

interception, is essentially a point-tracking problem, and could be solved by the application of the

navigation primitives described in 3.2. However, this would not result in the shortest possible

interception time, since this method is normally sub-optimal in that aspect. For this reason, the

application of a guidance law to the interception task becomes advantageous. Not only do these

guidance laws help reduce the total required time for interception under normal conditions when

compared to a pure trajectory-tracking solution [28], but they also deal more efficiently with

unexpected variations of the target’s motion. However, when under the control of a guidance law, the

robot is not capable of matching the desired interception trajectory, since these laws only ensure that

the robot will eventually reach point I, but have no means to slow down the robot, in order to satisfy

the conditions presented in 4.2.2. Therefore, the application of trajectory tracking is still necessary in

these circumstances, and the control of the robot must then alternate between these two methods in

32

an appropriate manner so as to optimize the required time for interception. In the following sections,

the operation of both of these methods is detailed: the guidance law applied in this work, Ideal

Proportional Navigation Guidance, is described in Section 4.2.4; the application of trajectory tracking

to the interception process is discussed in Section 4.2.6; the process of selecting the appropriate

control method at each instant in order to optimize the interception time is described in Section 4.2.7.

4.2.4 Ideal Proportional Navigation Guidance

Proportional Navigation Guidance (PNG) laws have been widely applied in the context of free-

flying object interception, usually in the context of aerodynamically controlled systems, since they were

introduced in the 1950s [20], due to their simplicity of implementation and low level of required

information. The premise behind guidance laws these is simple: two moving objects are on a collision

course when the relative angle between them remains constant, and the distance between them is

decreasing. To accomplish this, a control signal in acceleration form is obtained. The way through

which this control signal is calculated characterizes these laws as either pursuer-velocity referenced or

Line-Of-Sight (LOS) referenced laws. A comparison between the two classes can be found in [30].

The proposed solution utilizes a LOS-referenced guidance law known as Ideal Proportional

Navigation Guidance (IPNG), which was introduced in [31] and also used in robotic interception in

[13]. IPNG is superior over other existing LOS-referenced laws in terms of robustness to initial

conditions and required time for interception [32]. Despite being dismissed as unpractical for missile

guidance due to its physical requirements, such as lateral acceleration, it is well suited for robotic

interception, particularly in the case of systems with unrestricted mobility. For omnidirectional robots,

the resulting control acts solely on position, and no restrictions on orientation are imposed.

Figure 14: Interception geometry through IPNG.

Consider the interception geometry presented in Figure 14. Note that, for clarity, these

derivations will be made considering that the intended target is the center of the ball. As discussed in

33

Section 4.2.2, the real target has a constant offset in position to accommodate for the physical

restrictions of the robot. This has no other implications in the description of this method.

Let the velocity of the pursuer, which in this case is an omnidirectional robot, and of the target,

which is the ball, be defined, in the world frame, as:

̇ = ோܸ(cos(ߙ)࢞ࢋ + sin(ߙ)ࢋ௬) (4.7)

̇ = ܸ(cos(ߚ)࢞ࢋ + sin(ߚ)ࢋ௬) (4.8)

where ߙ and ߚ are, respectively, the angles of the velocity of the robot and of the ball in the world

frame.

Even though this analysis is made in the world frame, the procedure is not affected by self-

localization errors, since only the relative position between the robot and the ball is relevant, and this

is achieved through ball localization. It is also assumed that ோܸ ≥ ܸ, although this is not necessary for

the convergence of the control law. Note that, for a freely rolling ball, and assuming that there are no

boundaries on the robot’s environment, this condition will always be achieved after some time, since

the ball is decelerating due to friction. In a bounded environment, such as in a robotic soccer field, it is

possible that this condition is never verified, and, for this reason, interception could become

impossible for some initial conditions of ோܸ and .ߙ

Also, let denote࢘ the displacement between pursuer and target, also in the world frame:

=࢘ ݔ) − ࢞ࢋ(ோݔ + ݕ) − ࢟ࢋ(ோݕ (4.9)

The Line-Of-Sight angle, ,ைௌߠ is:

ைௌߠ = ݐܽܽ ݕ)2݊ − ோݕ ݔ, − (ோݔ (4.10)

Now consider the coordinate system { ݁, ఏ݁, ݁} defined as shown in Figure 14. In these

coordinates, the acceleration command obtained through IPNG is, by definition:

ூேீࢇ = ×̇࢘ܰ ைௌࣂ̇ (4.11)

where ܰ is the Navigation Constant, and ைௌࣂ̇ = .ࢋைௌߠ̇ It can be shown that with ܰ > 2 interception

is always achieved [31].

As seen by equation (4.11), IPNG generates an acceleration which is orthogonal to the relative

velocity between the target and pursuer, which implies that the norm of the latter will be preserved. In

LOS-referenced coordinates, this means that there is a component along the normal to the LOS which

tries to nullify the LOS rate,̇ࣂைௌ, and a component along the direction tangent to the LOS, which acts

to keep the norm of the relative velocity constant. One important property that stems from this fact is

that as the LOS rate approaches zero, the closing velocity approaches constant values, and so the

trajectory described by the robot, relative to the ball, is approximately linear. Also, note that if ோܸ = 0,

IPNG would generate an acceleration command orthogonal to the velocity of the ball

undesirable since the initial velocity of the robot in these conditions would not be directed towards the

interception point, and the subsequent turning effort would increase the required time for interception.

Guidance laws such as IPNG are usu

and greater than that of target [31

this condition is not initially verified, other control methods (such as trajectory tracking) prove more

efficient in this interval [13]. It is for this reason that IPNG is only used wh

Figure 15: Representation of the trajectory described by the robot in a frame moving with the

same velocity as the ball. While under the control of IPNG, this trajectory is approximately

The presence of two acceleration components demands both forward and lateral accelerations

by the pursuer, which are always achievable by omnidirectional robots (provided that its actuators are

not saturated, as it was covered in S

of mobile robots. In those cases, the application of a more conservative velocity

law, such as Pure Proportional Navigat

inferior, results (in fact, Yang et al. show in

Also in the { ݁, ఏ݁, ݁} coordinate system, it follows that:

an acceleration command orthogonal to the velocity of the ball

undesirable since the initial velocity of the robot in these conditions would not be directed towards the

interception point, and the subsequent turning effort would increase the required time for interception.

Guidance laws such as IPNG are usually derived considering that the speed of the pursuer is constant

31],[32]. Although this does not prevent these laws

this condition is not initially verified, other control methods (such as trajectory tracking) prove more

. It is for this reason that IPNG is only used when ோܸ >

: Representation of the trajectory described by the robot in a frame moving with the

same velocity as the ball. While under the control of IPNG, this trajectory is approximately

linear.

acceleration components demands both forward and lateral accelerations

by the pursuer, which are always achievable by omnidirectional robots (provided that its actuators are

aturated, as it was covered in Section 3.4), but may not be possible or desirable for other

se cases, the application of a more conservative velocity-

law, such as Pure Proportional Navigation Guidance (PPNG,[30]), would achieve similar, albeit slightly

inferior, results (in fact, Yang et al. show in [32] that IPNG is an extreme case of PP

coordinate system, it follows that:

=࢘ ࢘ࢋݎ

=̇࢘ ࢘ࢋݎ̇ + ࢋைௌߠ̇ × ⇔࢘

⇔ =̇࢘ ࢘ࢋݎ̇ + ࣂࢋைௌߠ̇ݎ

34

an acceleration command orthogonal to the velocity of the ball, which is

undesirable since the initial velocity of the robot in these conditions would not be directed towards the

interception point, and the subsequent turning effort would increase the required time for interception.

ally derived considering that the speed of the pursuer is constant

. Although this does not prevent these laws from converging if

this condition is not initially verified, other control methods (such as trajectory tracking) prove more

ܸ.

: Representation of the trajectory described by the robot in a frame moving with the

same velocity as the ball. While under the control of IPNG, this trajectory is approximately

acceleration components demands both forward and lateral accelerations

by the pursuer, which are always achievable by omnidirectional robots (provided that its actuators are

), but may not be possible or desirable for other classes

-referenced guidance

), would achieve similar, albeit slightly

that IPNG is an extreme case of PPNG).

(4.12)

(4.13)

35

Separating the target and pursuer velocities in their normal and tangent components:

=ݎ̇ ܸ cos(ߠைௌ− (ߚ − ோܸcos −ைௌߠ) (ߙ (4.14)

ைௌߠ̇ݎ = − ܸ sin(ߠைௌ− (ߚ + ோܸ sin(ߠைௌ− (ߙ ⇔

⇔ ைௌߠ̇ =
1

ݎ
(− ܸ sin(ߠைௌ− (ߚ + ோܸ sin(ߠைௌ− ((ߙ

(4.15)

Through the substitution of (4.14) and (4.15) in (4.13), the IPNG acceleration command is

obtained with (4.11). In order to obtain this acceleration in the world frame, a simple rotation is applied:

4.2.5 Control Signal Conditioning for IPNG

While the control signal obtained through (4.16) ensures that successful interception is

achieved for ܰ > 2, no considerations are made about the robot’s dynamic restrictions. As it was seen

in Section 3.4, if this control signal exceeds the limitations of the robot’s actuators, its components are

scaled accordingly to minimize the distortion of the robot’s trajectory; however, it is also possible that

the desired acceleration is too small, and fails to make use of robot’s capabilities. In fact, the control

signal described by (4.16) becomes null whenever a constant LOS rate is achieved, effectively

“locking” the closing velocity to a constant value, along with whatever velocity the robot has at the

time. Since the IPNG command itself depends solely on the relative velocity, the control signal itself

has to be modified in order to reduce the required time for interception.

The most direct way to achieve this is by accelerating the robot along the tangent to the LOS.

Recall from (3.56) that:

߮̈ଵ
߮̈ଶ
߮̈ଷ

൩=
1

ݎ
ቈܬ

௫ܽ

௬ܽ

ߙ
 (4.17)

By adding an acceleration command ܽ tangent to the LOS direction, it results that:

߮̈ଵ
ᇱ

߮̈ଶ
ᇱ

߮̈ଷ
ᇱ

=
1

ݎ
ቈܬ

௫ܽ

௬ܽ

ߙ
+

1

ݎ
ቀܴܬ ିଵ(ߠ)ቂ

(ைௌߠ)ܤ 0
0 1

ቃቁቈ
ܽ

0
0
⇔

⇔

߮̈ଵ
ᇱ

߮̈ଶ
ᇱ

߮̈ଷ
ᇱ

=
1

ݎ
ቈܬ

௫ܽ

௬ܽ

ߙ
+

ܽ

ݎ
ቀܴܬ ିଵ(ߠ)ቂ

(ைௌߠ)ܤ 0
0 1

ቃቁ
1
0
0
൩ (4.18)

which can be rewritten as,

ூேீࢇ
ௐ = ൫ܰ(ைௌߠ)ܤ ×̇࢘ ைௌ൯ࣂ̇ (4.16)

36

߮̈ଵ
ᇱ

߮̈ଶ
ᇱ

߮̈ଷ
ᇱ

=

߮̈ଵ
߮̈ଶ
߮̈ଷ

൩+ ܽ

߮̈ଵ

߮̈ଶ

߮̈ଷ

 (4.19)

The term [߮̈ଵ
 ߮̈ଶ

 ߮̈ଷ
]் represents the contribution of a unit vector in the LOS direction to

the angular accelerations of the robot’s actuators. The maximum permissible value for ܽ is then:

ܽ = min
୧ୀଵ,ଶ,ଷ

ெߙ
 − ߮̈

߮̈
 (4.20)

4.2.6 Matching the Interception Trajectory through Point Tracking

It is important to assure that, when the robot is under the control of the point-tracking

primitives, no overshoot occurs due to poor selection of the point-tracking controller’s poles, and that

the limits of the robot’s actuators are respected. To achieve this, consider the application of (3.16) with

 = and ଵߣ = ଶߣ = :ߣ

ࢀࡼࢇ = +࢜(ߠ)ܤ̇−ቀ(ߠ)ଵିܤ −̈ −̇)߉2 (̇ − −)ଶ߉)ቁ (4.21)

It can be easily verified, through (4.17), if this control law produces values outside of the range

of the actuators. If so, and for every iteration where this happens, a value for ߣ is numerically sought in

the intervals defined by (3.29) and (3.30), such that the resulting signal ࢀࡼࢇ is achievable by the robot.

In the event that it is impossible to find a proper value for ,ߣ then overshoot is inevitable. This may

happen if, for instance, the control switches over from IPNG to point-tracking too close to the goal

point, and the robot isn’t able to brake sufficiently fast. These situations must be avoided by properly

determining the switching instants.

4.2.7 Selection of the Proper Control Signal

Having described the application of IPNG and point tracking to the ball interception problem, it is

important to analyze how these techniques can be used together in the most efficient manner, i.e., in

order to minimize the total required time for interception. The total time is taken as the sum of the time

during which the robot is under the control of IPNG, ,ூேீݐ point-tracking, ,்ݐ and braking, :ݐ

=௧௧ݐ ூேீݐ + ்ݐ + ݐ (4.22)

As it was seen previously, the main premise behind the usage of IPNG is that it is faster in

normal conditions than the point-tracking primitives, and should therefore be used as long as possible

in the (S-I) segment of the interception process. As with most proportional navigation laws, however,

37

IPNG is not efficient when ோܸ < ܸ, and so control should also be assigned to point-tracking in this

case. Once the robot reaches point I, by verifying the conditions presented in 4.2.2, the robot then

brakes until it comes to a full stop, with a constant acceleration of the form:

ࢇ = ܭ] cos(ߙ+ (ߨ ܭ sin(ߙ+ ்[(ߨ (4.23)

where ܭ > 0 and ߙ is the angle of the robot’s linear velocity in the world frame. The procedure to

select the appropriate controls during ball interception in represented in Figure 16. An example of the

different types of motion control applied during interception is shown in Figure 17, where the instants

where the control is switched are denoted as ,ௌଵݐ ௌଶݐ and .ௌଷݐ Of these, ௌଶݐ has the greatest effect on

the total interception time, since ௌଵݐ and ௌଷݐ cannot be freely selected. The minimum of ௧௧ݐ is then

achieved by selecting ௌଶݐ as late as possible, without inducing the point tracking controller into an

overshoot situation, since overshoot would necessarily increase ,்ݐ and consequently .௧௧ݐ In [13]

and [29], the optimal switching instant was determined by estimating the required time to interception,

which requires finding the solutions to (3.28) in real-time. In the current approach, it was instead opted

to directly check for the existence of overshoot (through the concepts discussed in Section 4.2.6),

since this follows from the selection of the point tracking controller’s poles, which has to be performed

anyway. The resulting functionality is equivalent, and in either case, in order to assert at any given

iteration if control should be assigned to point tracking, it is necessary to predict the position and

velocity of both the robot and the ball in the following iteration, if rigorous control is required. If the

sampling period is small enough however, this prediction step can be overlooked, since by selecting

ௌଶݐ as the first instant in which overshoot is detected, the effective overshoot around the target point is

negligible.

?BR VV

)(),(),(ttt iii ppp

Figure 16: Algorithm to determine the suitable type of motion control during ball interception.

Figure 17: An example of a ball interception task. (a): the

magnitude of the linear acceleration) applied to the robot, and the distance from the robot to

the ball, during interception. (b): The trajectory described by the robot

these controls are applied. In both cases, t

Point Tracking (PT), IPNG and constant deceleration (Bra

(a)

(b)

: An example of a ball interception task. (a): the control signals (represented by the

magnitude of the linear acceleration) applied to the robot, and the distance from the robot to

(b): The trajectory described by the robot in the world frame,

. In both cases, the various types of motion control are also shown:

Point Tracking (PT), IPNG and constant deceleration (Braking), as well as the switching

instants ,ࡿ࢚ ࡿ࢚ and .ࡿ࢚

38

control signals (represented by the

magnitude of the linear acceleration) applied to the robot, and the distance from the robot to

in the world frame, when

he various types of motion control are also shown:

king), as well as the switching

39

4.3 Object Transport

The focus is now given to the class of problems in which a mobile robot is supposed to interact

with a movable object in its environment, by displacing it from its original location to some given target

point. The robot achieves this by pushing the object while it is in contact with some part of its chassis.

An evident example of such a problem is the fundamental ability of moving the ball across the field of

play in the robotic soccer domain, under some geometry constraints, without losing it, which is one of

the most important functionalities that a robotic soccer player must possess. Depending on the robot’s

configuration and type of locomotion, different control strategies may be employed to achieve smooth

ball movement. For a differential-drive robot, for example, the robot must always rely on some physical

apparatus fixed to the robot’s chassis, the so-called flippers (see Section 6) to maintain the ball under

possession and within reach of its kicker mechanisms. Whenever the robot turns whilst having

possession of the ball, the ball is forced to turn “with” the robot, and these flippers keep the ball from

rolling away. This has been the approach taken until now by the ISocRob team. Previous to the

current work, the implementation of the dribbling process was based on a potential-fields based

approach, which enforced some restrictions on the robot’s motion to account for the forces exerted to

the ball by the robot’s flippers [2]. A similar approach was taken in [33] to extend these concepts to

omnidirectional robots, but required the predetermination of a path that would not infringe the physical

restrictions of the dribbling process. This limits the usefulness of the solution in a highly dynamical

environment such as robotic soccer, where global motion planning is usually avoided.

As with the ball interception problem, many approaches to dribbling in robotic soccer are based

in reinforcement learning and neural network techniques (e.g.[34] and respective references). These

approaches suffer from the same limitations of being difficult to adapt to changes in the physical

dimensions that are relevant to the dribbling process.

4.3.1 Overview of the Solution

For an omnidirectional robotic soccer player, the desired behavior is such that the robot is able

to turn “around” the ball whilst the ball is moving, as depicted in Figure 19. In this way, the robot is

able to maintain the ball under possession regardless of the required motion (assuming that the

velocity of the ball is under a certain limit, as it will be seen). It should also be noted that soccer robots

usually possess specialized actuators that act to keep the ball in contact with the robot’s chassis, but,

by themselves, are not allowed by the game rules to be capable of maintaining the ball under

possession at all times. Therefore, the dynamics of the ball should not be overlooked, and the role of

such actuators should be to provide added stability to the system.

The problem then reduces to applying a pushing force to the ball with a certain magnitude and

direction so that the ball will eventually be driven to its target. The proposed solution is based on the

Interface-Control scheme introduced by Nakamura et al. in [35], in the context of coordinative robotic

manipulation, and applied to the manipulation of free-flying objects by mobile manipulators in [36]. In

this control scheme, the resultant forces that should be applied to the object at each instant are

obtained, through an “object controller”

these forces then serve as reference

control inputs to the robot’s actuators are found, and the object is effectively displaced.

object controller acts only indirectly upon t

it provides serve as an “interface” to the robot’s controller.

capable of following independent f

to these specifications is Hybrid force/position control

constraints placed upon the robot to reduce the dimension of the robot’s state, thereby simplifying the

control problem.

-

+ Object
Controller

Required

Desired
position / velocity

Estimate of the
object’s friction

Figure 18: The Interface-Control

It should be pointed out that, d

to stabilize the ball around a reference position; instead, it is only required to drive the ball through a

given reference as fast as possible

stabilizable). However, to fully demonstrate the capabilities of the proposed solution, the stabilization

problem will be considered, without loss of generality, since

of a robotic soccer match is straightforward.

Figure 19: Representation of the dribbling process for an omnidirectional robot.

a trajectory described by the center of the b

described by the center of an omnidirectional robot dribbling the ball is shown as a dashed

, through an “object controller” that seeks to stabilize the object around a given refer

references that the robot must achieve, and through them the necessary

the robot’s actuators are found, and the object is effectively displaced.

indirectly upon the dynamic model of the object, and the desired forces that

it provides serve as an “interface” to the robot’s controller. To this end, the robot’s controller must be

capable of following independent force and position references. A control technique parti

to these specifications is Hybrid force/position control [37],[38],[8], which makes use of

constraints placed upon the robot to reduce the dimension of the robot’s state, thereby simplifying the

Robot
Controller

Object Localization

Robot’s
Actuators

Required
Force

Required
Accelerations/

Velocities

Object position/
velocity

Sensors/
Estimation

+
-

Control scheme for the manipulation of an object by a single robot.

It should be pointed out that, during a robotic soccer match, the robot is not normally required

to stabilize the ball around a reference position; instead, it is only required to drive the ball through a

fast as possible (i.e. overall, the system must be controllable, but

However, to fully demonstrate the capabilities of the proposed solution, the stabilization

without loss of generality, since its extension to the regular requirements

straightforward.

Representation of the dribbling process for an omnidirectional robot.

a trajectory described by the center of the ball is shown as a solid line. The desired trajectory

described by the center of an omnidirectional robot dribbling the ball is shown as a dashed

line.

40

around a given reference;

that the robot must achieve, and through them the necessary

the robot’s actuators are found, and the object is effectively displaced. Therefore, the

, and the desired forces that

To this end, the robot’s controller must be

orce and position references. A control technique particularly suited

, which makes use of the physical

constraints placed upon the robot to reduce the dimension of the robot’s state, thereby simplifying the

Object

Applied
Force

an object by a single robot.

uring a robotic soccer match, the robot is not normally required

to stabilize the ball around a reference position; instead, it is only required to drive the ball through a

system must be controllable, but not necessarily

However, to fully demonstrate the capabilities of the proposed solution, the stabilization

extension to the regular requirements

Representation of the dribbling process for an omnidirectional robot. An example of

all is shown as a solid line. The desired trajectory

described by the center of an omnidirectional robot dribbling the ball is shown as a dashed

41

4.3.2 Object Controller – PD Control

In an environment with multiple robotic systems manipulating an object in a coordinate

manner, as in the original formulation of the Interface-Control scheme, when determining the desired

resultant force that must be applied to the object, it is necessary to take into account its shape and the

internal forces that arise from the presence of the multiple forces exerted upon its surface. However, in

the dribbling problem, it is assumed that a single robot exerts a force through the ball’s center of mass

at any given instant. As such, any controller that is able to stabilize the dynamic model of the ball (4.3)

around a reference position is suitable for a dribbling task. Taking ࢛ = ,ࢌ this dynamic model can also

be written in standard form as:

=̇࢞ +࢞ܣ ࢛)ܤ + (࢘ࢌ

࢟ = ࢞ܥ
(4.24)

It is assumed that the state =࢞] ்[࢜ is fully accessible. It can also be readily shown that

the system is controllable (although that is an intuitive result). The problem is then to obtain a control

law of the form:

࢛ = −࢞ܭ− ࢘ࢌ (4.25)

where ܭ is a gain matrix such that the closed loop system described by −ܣ ܭܤ has stable poles.

Recall that ࢘ࢌ may be estimated, since the physical dimensions of the ball, and the friction coefficient

between the ball and the field of play, are known. By choosing ܭ as:

ܭ =
݇݉ 0

0 ݇݉

ௗ݇݉ 0
0 ௗ݇݉

൨ (4.26)

The closed loop system then becomes:

=̇࢞ ൦

0 0
0 0

1 0
0 1

− ݇ 0

0 − ݇

− ௗ݇ 0
0 − ௗ݇

൪࢞ (4.27)

As a consequence, the system may be decoupled into two linear second order systems

possessing the characteristic equation:

ଶݏ + ௗ݇ݏ+ ݇ (4.28)

This is to say that both of these systems, each corresponding to a component of the ball’s

position, are under PD control. A well known result is that, by selecting ௗ݇ = 2ඥ ݇ , the system

becomes critically damped, with poles at =ݏ −ඥ ݇ = −

ଶ
. The criteria for the selection of the poles is

reminiscent to that of the trajectory t

limits of the robot’s actuators impose a maximum admissible speed for the ball while dribbling, which

acts as a saturation limit upon the ball itself. Above this speed value, the robot will no longer be able to

accompany the ball along its path, and the ball will be lost. Lik

exists which is related to the maximum acceleration that the robot is able to impart

poles must then be placed in order to attenuate the effects of these nonlinearities, and to guarantee

that no overshoot occurs given arbitrary initial conditions.

4.3.3 Robot Controller – Hybrid Position/Force Control

Figure 20: Geometric details of the dribbling process.

Given an instantaneous required force

object controller (the output of the object controller, so in the notation of Section

assuming that the robot has the ball under

exert that force on the ball while satisfying a set of physical restrictions that allow the robot to dribble

the ball continuously. In these conditions, the ball is positioned along the robot fra

distance ܴ from the center of the robot.

of mass, and assuming that the robot’s lateral flippers should not be relied on for ball handling except

when strictly necessary (rather, they should provide added safety during dribbling), then this implies

that any forces applied to the ball by the robot should also be along the robot frame’s

turn, means that the robot must align itself with the required force v

Let
ௐ =)]

ௐ)் ்[ߠ denote the posture of the robot in the world frame, and

of the ball in that frame. Throughout this section, the superscript

the world frame, whereas ܴ will be used to denote vectors in the robot frame. If the superscript is

omitted, then the corresponding vector belongs to

Figure 20. In this frame, the posture of the robot is given by

and the desired force is =ࢌ ൫cosܨ

restrictions that the robot is subject to w

interception problem, are here re

reminiscent to that of the trajectory tracking primitive described in Section 3.2; in fact, the saturation

s actuators impose a maximum admissible speed for the ball while dribbling, which

the ball itself. Above this speed value, the robot will no longer be able to

accompany the ball along its path, and the ball will be lost. Likewise, a maximum admissible force

exists which is related to the maximum acceleration that the robot is able to impart

poles must then be placed in order to attenuate the effects of these nonlinearities, and to guarantee

occurs given arbitrary initial conditions.

Hybrid Position/Force Control

: Geometric details of the dribbling process.

Given an instantaneous required force ࢌ that must be applied on the ball

(the output of the object controller, so in the notation of Section

assuming that the robot has the ball under its possession, the objective of the robot controller is to

while satisfying a set of physical restrictions that allow the robot to dribble

the ball continuously. In these conditions, the ball is positioned along the robot fra

from the center of the robot. Since the required force is linear and through the ball’s center

of mass, and assuming that the robot’s lateral flippers should not be relied on for ball handling except

y (rather, they should provide added safety during dribbling), then this implies

that any forces applied to the ball by the robot should also be along the robot frame’s

turn, means that the robot must align itself with the required force vector at all times

] denote the posture of the robot in the world frame, and

Throughout this section, the superscript ܹ will be used to denote vectors in

will be used to denote vectors in the robot frame. If the superscript is

then the corresponding vector belongs to a frame centered on the ball,

posture of the robot is given by = ݔ] ݕ ்[ߠ =

൫cos൫ߠ൯ ௫݁ + sin (ߠ) ௬݁൯, i.e. ܨ = ‖ࢌ‖ and ߠ = atan

restrictions that the robot is subject to while holding the ball, which were already introduced in the ball

interception problem, are here re-written as:

42

; in fact, the saturation

s actuators impose a maximum admissible speed for the ball while dribbling, which

the ball itself. Above this speed value, the robot will no longer be able to

ewise, a maximum admissible force

exists which is related to the maximum acceleration that the robot is able to impart to the ball. The

poles must then be placed in order to attenuate the effects of these nonlinearities, and to guarantee

that must be applied on the ball supplied by the

(the output of the object controller, so in the notation of Section 4.3.2, =ࢌ ,(࢛ and

the robot controller is to

while satisfying a set of physical restrictions that allow the robot to dribble

the ball continuously. In these conditions, the ball is positioned along the robot frame’s x-axis at some

Since the required force is linear and through the ball’s center

of mass, and assuming that the robot’s lateral flippers should not be relied on for ball handling except

y (rather, they should provide added safety during dribbling), then this implies

that any forces applied to the ball by the robot should also be along the robot frame’s x-axis. This, in

ector at all times.

denote the posture of the robot in the world frame, and
ௐ the position

will be used to denote vectors in

will be used to denote vectors in the robot frame. If the superscript is

a frame centered on the ball, as represented in

] =)]
ௐ −

ௐ)் ,்[ߠ

atan2(௬݂, ௫݂).The physical

hile holding the ball, which were already introduced in the ball

43

ଶݔ + ଶݕ = ܴ
ଶ (4.29)

atan2(−ݔ−,ݕ) = ߠ (4.30)

These restrictions define independent constraint surfaces in :ࡾ

ܿ() = 0 ,݅= 1,2 (4.31)

where ଵܿ() and ଶܿ() represents restrictions (4.29) and (4.30), respectively. Contrarily to the ball

interception task, however, the only admissible displacements made by the robot are those that satisfy

these constraints continuously. In this case, it is advantageous to control both the position and

orientation of the robot simultaneously. The constraint-compliant control of a robotic system through

hybrid position/force control has been derived thoroughly in [37]. Here, these concepts are adapted to

the particular problem of dribbling by an omnidirectional robot.

Consider the Jacobian ிܧ of the vector-valued function ()ࢉ = [ଵܿ() ଶܿ()]்:

ிܧ =
ߙ 0
0 ߚ

൨
ିଵ

ݔ ݕ 0
ݕ

ܴ
ଶ −

ݔ

ܴ
ଶ 1 (4.32)

where ߙ and ߚ are chosen so that each row of ிܧ has unitary norm, i.e.:

ߙ = ܴ = ଶݔ + ଶݕ

ߚ = ඨ
1 + ଶߙ

ଶߙ

(4.33)

Naturally, each row vector of ிܧ is normal to one of the constraint surfaces, and, as can be

readily seen, orthogonal to each other. By defining the complementary unit vector ܧ as:

ܧ = −
ݕ

ߚߙ

ݔ

ߚߙ

1

ߚߙ
൨ (4.34)

which is orthogonal to both of the rows of ிܧ and also of unit length, then an orthonormal basis to

constraint space can be formed through ܧ and the rows of ,ிܧ and the coordinate frame defined by

these vectors and centered on the robot’s current posture is designated as constraint frame. Vectors

in the constraint frame with non-zero components along either of the axes defined by ிܧ tend to violate

the imposed constraints. Similarly, vectors that are collinear with ܧ maintain the validity of these

constraints. Let the square matrix ܧ be defined as:

ܧ =
ܧ
ிܧ
൨ (4.35)

44

Matrix ܧ transforms vectors from the frame centered on the ball to the constraint frame. The

objective of the robot controller, however, is to provide an acceleration control in the robot frame,

ࢇ
ோ = ̈

ோ. To this end, defining = ்()] 0]்:

̇ = ̇)ܴ
ோ − ̇

ோ) (4.36)

where ܴ = .(ߠ)ܴ Differentiating once more, and rearranging terms:

̈
ோ = ܴିଵቀ̈− ̇)ܴ̇

ோ − ̇
ோ)ቁ+ ̈

ோ (4.37)

The acceleration of the ball in the robot’s frame, ̈
ோ , can be readily obtained through an

estimate of the friction acting on the ball (i.e. .(࢘ࢌ The relationship between the acceleration of the ball

in the world (or ball) frame and in the robot’s frame is described in [33].

Also, note that, by definition:

̇ிܧ = 0 (4.38)

+̈ிܧ ̇ிܧ̇ = 0 (4.39)

Let ࡲ࢘ࢇ = .̇ிܧ̇ Using (4.32), this term can be obtained as:

ࡲ࢘ࢇ =
ଶݔ̇ + ଶݕ̇

ߙ
0

൩ (4.40)

In an analog manner, for ܧ it can be seen that:

̇ܧ =
1

ߚߙ
ߠ̇ (4.41)

+̈ܧ ̇ܧ̇ = ̈ܧ =
1

ߚߙ
ߠ̈ (4.42)

In which it was implied that ̇ܧ̇ = 0, which can be readily checked through (4.34). These results show

that any motion made by the robot which is consistent with its constraints can be specified solely in

terms of its orientation ,ߠ which is intuitive since the distance to the ball may not change while

dribbling. By doing so, the problem of keeping the robot aligned with the required force vector reduces

to that of finding an appropriate control such that ߠ converges towards ,ߠ the force vector’s angle in

the ball-centered frame. Combining (4.39) and (4.42), it follows that:

ܧ
ிܧ
൨̈ = ቈ

ߠ̈(ߚߙ/1)
̇ிܧ̇−

⇔

45

⇔ ̈ = ଵିܧ
ߠ̈(ߚߙ/1)
ிࢇ−

൨ (4.43)

The resulting acceleration that must be applied to the robot’s actuators, and which satisfies the

imposed constraints, is obtained through (4.37), and is given by:

ࢇ = ܴିଵቆିܧଵ
ߠ̈(ߚߙ/1)
ிࢇ−

൨− ̇)ܴ̇
ோ − ̇

ோ)ቇ+ ̈
ோ (4.44)

Note that this problem of controlling ߠ through ,ߠ̈ is another instance of the “
ଵ

௦మ
plant” problem

that was already dealt with in Section 3.3.2 in the context of unrestricted motion, and so the same

control techniques may be applied.

The acceleration control defined by ࢇ exerts no force onto the ball, as it only rotates the robot

around the ball. The problem then turns to finding a similar control which results in a force of the same

magnitude as ࢌ being applied to the ball’s center of mass. As it was already explained, this could be

attained by applying the acceleration ̈
ோ = [௫ܽ 0 0]். However, this is heavily susceptible to errors

in the orientation of the robot. A better solution is to consider that the required force will necessarily

attempt to infringe the constraints placed on the motion of the robot. Any force ࢌࢋࢌ exerted by the robot

on the ball while dribbling verifies, through the virtual work principle [37],[35]:

ࢌࢋࢌ்̇ = 0 (4.45)

Using (4.38), ࢌࢋࢌ can be expressed in terms of the constraint frame components belonging to

:ிܧ

ࢌࢋࢌ = ிܧ
ிࢌ் (4.46)

All that is left is then to relate ࢌ and .ிࢌ It should then be noted that a force directed to the

center of the ball is necessarily normal to the constraint surface defined by (4.29). As a result, a force

with the same magnitude as the desired force, and directed through its center of mass, can be

obtained by selecting:

ிࢌ = ܨ−] 0]் (4.47)

This is justified by the fact that any force directed towards the ball is necessarily normal to the

constraint surface defined by (4.29). This force can then be transformed into an acceleration control

on the robot frame:

ிࢇ =
1

݉

ܴିଵܧி
ிࢌ் (4.48)

46

The total acceleration that must be applied to the robot is:

ࢇ = ࢇ + ிࢇ (4.49)

The system is then able to follow independent position (through (ߠ and force (through (ܨ

trajectories. Consequently, the robot will continuously accompany the ball and apply to it the

necessary force returned by the object controller.

By choosing ி߬ as being independent of the robot’s orientation, the system would behave

strangely in the initial instants of its motion, while the robot is not yet aligned with ,ߠ since the force

ࢌࢋࢌ would drive the ball in an unintended direction. Therefore, the system must be prevented from

acting upon the ball until the orientation error is under some threshold value ܶ > 0, i.e. ிࢇ is redefined

as:

ி'ࢇ = ൝

1

݉

ܴିଵܧி
ிࢌ் ݂݅ หߠ− ≥หߠ ܶ

0 ℎݐ ݓݎ݁ ݏ݅݁

� (4.50)

Another important problem arises from the assumption that the constraints (4.29) and (4.30)

are always valid as long as the robot does not perform any movements that are inconsistent with

these constraints. In reality, some amount of error may be introduced in the system, for example, due

to inexact modelling and wheel slippage. This error would be accumulated throughout the dribbling

process and could result in the loss of the ball. It is thus convenient to include in the position

acceleration control defined by (4.50) a recovery term ௌࢇ that acts to maintain the dribbling constraints

valid:

ௌࢇ = ܴିଵିܧଵ
0

ܽௌ

0
൩+

0
0
ఏௌߙ

൩ (4.51)

The restrictions are then addressed individually: in order to maintain (4.29) valid, the term

ܴିଵିܧଵ[0 ܽௌ 0]் is included, which acts as a force similar to ࢌࢋࢌ , which drives the robot towards

the ball; to satisfy (4.30), a simple torque compensation [0 0 ்[ఏௌߙ is included which keeps the

robot turned to the ball. The values for ܽௌ and ఏௌߙ are obtained through any applicable control laws

(these are yet another instance of the double-integrator problem). The resulting control is then:

'ࢇ = ࢇ + ி'ࢇ + ௌࢇ (4.52)

As a final note, it should be pointed out that the problem of hybrid position/dynamic control

isn’t well defined for discrete-time systems. In this case, the controls have to be taken as the finite-

difference approximation of their continuous-time counterparts.

47

4.3.4 Actuator Limitations

It is now necessary to consider that the acceleration controls provided through (4.52) may

exceed the capabilities of the robot’s actuators. As it was discussed in Section 3.4 for unrestricted

motion, even if these acceleration controls are always scaled down to admissible values, there is no

guarantee that the form of the robot’s trajectory is preserved. Even if it could be preserved by making

the robot move in a slower manner, this would mean that the robot wouldn’t be able to accompany the

ball in these situations. This is of great significance for the dribbling problem, since it could mean that

the restrictions placed on the motion of the robot would not be satisfied. Therefore, even before

considering any controls that act upon the ball, it is important to identify the controls that are

necessary to keep the dribbling restrictions valid at all times. These controls may not be altered or

distorted in any way, since that would likely result in the loss of the ball. Using (4.44) with ߠ̈ = 0 (the

accelerations that are related to the application of the required force on the ball are not yet

considered), these necessary controls are given by:

ேࢇ = ܴିଵቆିܧଵ
0

ிࢇ−
൨− ̇)ܴ̇

ோ − ̇
ோ)ቇ+ ̈

ோ + ௌࢇ = ேࢇ + ௌࢇ (4.53)

The respective actuator accelerations ߮̈
ே that are required by ேࢇ are obtained through (4.17).

If, as before, a maximum admissible acceleration is given by ߮̈ெ , then if any of the actuator

accelerations obtained in this manner exceeds ߮̈ெ , the robot will not be able to satisfy the dribbling

restrictions. In order to avoid these situations, a maximum admissible velocity for the ball while

dribbling must be imposed, and may be determined experimentally. In addition to the controls defined

by (4.53), the desired position and force controls are specified:

ࢇ = ܴିଵିܧଵ(1/ߚߙ)̈ߠ
0

൨+ ிࢇ = ࢇ + ிࢇ (4.54)

It can be easily verified that ேࢇ + ࢇ = ࢇ . As before, let ߮̈
 denote the actuator

accelerations imposed by ࢇ . Following now the same reasoning as in the unconstrained motion case,

if ߮̈
 + ߮̈

ே > ெߙ
 for any actuator, let ఛܭ be defined as:

ఛܭ =
min
ୀଵ,ଶ,ଷ

ெߙ)
 − |߮̈

ே |)

max
ୀଵ,ଶ,ଷ

ห߮ ̈
ห

(4.55)

The numerator of (4.55) represents the available control effort after applying ߮̈
ே to the

actuators. Then, the resulting actuator accelerations are given by:

߮̈= ߮̈
ே + ఛ߮̈ܭ

 (4.56)

48

5 Obstacle Avoidance

In addition to motion control, another component of a mobile robot’s navigation that is

fundamental to the successful completion of the robot’s tasks, relates to its motion planning

competences. These competences encompass the path planning and obstacle avoidance capabilities

of the robot. During path planning, also known as global motion planning, the mobile robot is assumed

to have some degree of knowledge about its environment, which was either gathered by the robot

itself or supplied beforehand, and which describes the location of certain obstacles. The objective is

then to supply a safe path that will drive the robot to its goal. In contrast, the main idea behind

obstacle avoidance is that the robot should make use of the available sensory information in real-time

to make local decisions with respect to navigation, without any a priori information about its

surroundings, in what is also known as local motion planning. In other words, the robot should alter its

controls so that a safe detour is taken to avoid a detected object, whilst converging towards a goal

position or trajectory supplied by the global planning modules. In most situations, it is essential for a

mobile robot to possess both global and local motion planning capabilities in order to consistently

reach its destinations in a safe manner. In some environments however, one of these competences

can outweigh the other. Such is the case of the robotic soccer environment. Except for the goals,

which should not hinder the movement of the soccer robots, there are no other permanent obstacles

present in this environment. In this situation, global motion planning reduces to the problem of

obtaining a proper control law that takes a robot to its destination, such as the ones described in the

previous chapters, and should be computationally inexpensive. Real-time obstacle avoidance, on the

other hand, is of the utmost importance, since the speed at which the robots move could even result in

damage to the robot’s hardware in the event of a collision.

This chapter describes an obstacle avoidance solution that can be combined with any of the

motion control solutions presented in the previous chapters, to provide safety to the mobile robot

during the execution of its tasks.

5.1 Related Work

The most simple obstacle avoidance algorithms employ what is known as boundary-following,

such as the Bug algorithms [39]. The robot is expected to travel around a detected obstacle, following

its edges until some leaving condition is met, at which point the robot departs from the obstacle and

continues travelling to its goal. Traditionally, these methods produce inefficient paths to avoid collision,

and make use of only the most recent sensor information, which can be influenced by noise or

misreading. However, in many simple environments they can produce acceptable results. Additionally,

they have one important property: if the goal is reachable from the robot’s position, in the sense that

there is at least one safe path leading to it in the environment, then the robot is always able to reach

the goal after some time, regardless of its initial conditions. Such an algorithm is said to be complete.

More elaborate algorithms often sacrifice completeness for a reduction in their computational cost.

49

Many improvements and variations of the Bug algorithms exist in the literature [4]. One of these, the

TangentBug, described in [40], is especially relevant for the current work.

TangentBug follows the basic guidelines of the earliest Bug algorithms, which considered

mainly the use of contact sensors, and extends them for systems equipped with range-sensors. It

possesses two distinct navigation strategies: motion to target and obstacle boundary following. In the

former mode, the robot is guided to its target normally and is not hampered by any obstacle. In the

event that an obstacle is detected that prevents the robot from moving directly to its target, the

TangentBug algorithm then tries to follow the boundaries of the obstacle in question. In doing so it

relies on the computation of a local tangent graph (LTG) at each control cycle, to select the optimal

direction of movement. The LTG is a subset of the visibility graph (see the next section for details),

and it contains the shortest possible path around the detected obstacles. In order to build the LTG, the

algorithm makes use of any discontinuities detected in the range sensor data. It is shown in [40] that,

as the range of the sensors increases, the paths followed in this manner approach the global shortest

path to the goal. This method is also complete, as its predecessors.

Another common approach to obstacle avoidance is the artificial potential fields method

introduced by Khatib in [41]. In this approach, each obstacle is thought of as if it was able to exert a

repulsive “force” upon the robot depending on its measured distance, and at the same time the goal

position generates an attractive force that drives the robot to its target. The sum of both these

repulsive and attractive force components is then used as a control for the mobile robot. Most

algorithms based on this approach are subject to problems with local minima that may occur when the

repulsive and attractive forces cancel each other, resulting that the robot may become “trapped” in

such a situation and is thus unable to reach its goal. Another problem occurs whenever the obstacles

form a narrow corridor that the robot has to move through, since the opposing repulsive forces from

these obstacles drive the robot along a “valley” in the so-obtained potential field, which typically results

in oscillatory motion. Numerous improvements have been made to the original method (for example

[42],[43]), in order to overcome some of these limitations. Previous to the present work, the obstacle

avoidance algorithm that was used by the ISocRob team consisted of a modified potential fields

method that accounted for dribbling restrictions for differential-drive robots [2]. Although it presented

acceptable results, the method suffered from local minima problems, and did not consider the effects

of actuator saturation on the dynamical behavior of the robot. The latter problem should be properly

noted: being a purely abstract concept, the artificial potential fields method bears little relation to the

dynamic properties of the mobile robot. As a consequence, important control properties such as the

maximum deceleration and turning capabilities of the robot, are left unconsidered (the aforementioned

oscillation problem is a consequence of this fact). Minguez et al. later introduced the concept of ego-

dynamic space, an extension to the usual workspace and configuration space representations, that

takes some of the robot’s dynamic properties into account and allows the implementation of reactive

algorithms that, by themselves, lack this capability, such as the potential fields method.

The Virtual Force Field (VFF) [44] method and its improved version, the Vector Field

Histogram (VFH) [45] method share some of the basic concepts of artificial potential fields, but

account explicitly for sensor noise and misreadings. In these approaches, a discrete grid, the

50

histogram grid, is used to hold the sensor readings, which over time results in an approximation to the

probability distribution describing the location of the obstacles. VFH also creates a polar histogram

that divides the space around the robot into a fixed number of angular sectors, each with a certain

density value associated to the presence of obstacles. The sectors are then searched for the safest

direction of motion. In their work, Borenstein et al. also considered the effects of the robot’s dynamics

on its overall behavior. However, by analyzing only a discrete set of possible directions, some possible

safe paths are lost, and the robot may become trapped. Minguez et al. proposed the use of Nearness

Diagrams [46], which are similar to the polar histograms in VFH. The method tries to overcome the

limitations of VFH through an elaborate set of motion control laws that bear little consideration for the

dynamics of the robot. A derived method was applied to the ISocRob team in [1]. It was specifically

designed for use with differential-drive robots. It also displayed oscillation problems and performed

integrated motion control. As with VFH itself, it is well suited for the use of ultrasonic sensors, but

loses efficiency when applied to robots equipped with camera-based detection, such as the current

OmniISocRob platform. Since obstacle detection is purely image-based, there is no simple way to

obtain the constructs (like the Nearness Diagrams or polar histograms) necessary for this type of

algorithms.

A more analytical approach to obstacle avoidance was presented in the Dynamic Window

Approach [47] and the Curvature Velocity Method [48], which have demonstrated good results on

robots moving at high speeds. These methods operate by searching the space of admissible velocities

for the control inputs that maximize a given objective function. Admissible velocities are, in this sense,

those that will not cause collisions with any obstacles and are within the limits of the robot’s actuators.

To decide whether or not a given velocity will cause a collision, the robot’s kinematic and dynamic

models are used to project a trajectory into the configuration space (for example, differential-drive

robots can only move along arcs of circles). If these trajectories intersect obstacles, or the desired

safety boundaries around them, at a distance large enough that allows for the robot to come to a full

stop, it is considered safe. Although it was originally formulated for synchro-drive robots, in [49] Brock

and Khatib generalized the original dynamic window approach to holonomic robots. Despite having

important qualities, the dynamic window approach requires the update of the distances to all detected

obstacles for all trajectories arising from the admissible velocities inside the dynamic window, as well

as the subsequent maximization of the objective function. This results on a large computational

overhead that, for the robots utilized in the experiments of these authors, was admissible. However, in

the robotic soccer environment, especially for the current robotic platform in use by the ISocRob team,

this poses a serious limitation, since there are many other subsystems running simultaneously (in this

case, as part of the MeRMaID architecture) that demand a large amount of computational resources.

To reduce the computational load, the velocity space would have to be discretized into larger intervals,

resulting in poor dynamic response, which would defeat the purpose of the algorithm.

51

5.2 Overview of the Solution

The proposed solution to obstacle avoidance is intended as a replacement for the modified

potential fields approach described in [2], which was designed for differential-drive robots and has

since lost its validity. The method should comply with the following requirements:

 Computational efficiency – the total cycle time for the algorithm should be comparable

to that of the previous method, or preferably shorter;

 Should solve both the local minima and the narrow corridor problems;

 Should be prepared to handle control inputs both in velocity and acceleration form;

 Should specifically address sparse, simple environments;

 Should explicitly account for the presence of moving obstacles with measurable

velocities;

 Should be modular, in that it must be applied in tandem with the different control

strategies used during a robotic soccer match, including those which are presented in

this work, and provide efficient obstacle avoidance for each of them.

The development of the proposed method was at first based on the concepts introduced by

Dynamic Window Approach, the Steer-Angle field method [50], and the Curvature-Velocity method, as

an extension that would allow obstacle avoidance for moving obstacles. However, it was verified that,

given the overall simplicity of the environment in question, the resulting behavior could be approached,

for omnidirectional robots, by the simple TangentBug algorithm, which would simultaneously satisfy

most of the above requirements, at a much smaller computational cost. However, the algorithm itself is

not completely reactive, in that it assumes that the obstacles present in the environment can be

tracked, and modelled, in successive intervals. This is undesirable for environments populated with

moving obstacles. Furthermore, no methodology has been specified to build the aforementioned local

tangent graph for obstacles detected from images taken by an onboard camera (i.e. considering that

only the position of the obstacles is known, and no information is given about its shape, unlike what

happens with range-sensors).

Therefore, the proposed algorithm draws from the main advantages and concepts of the

TangentBug algorithm, but has the following core differences:

 It introduces a systematic process of obtaining locally near-optimal directions for

movement based on optically-detected obstacles, that eliminates the need for explicit

boundary-following modes and obstacle tracking;

 The application of the same principles to deal with moving obstacles;

 It can be applied to the tasks that involve transporting an object, such as the dribbling

methods described in Section 4.3, by applying these concepts to the object’s

controller.

The proposed method works by calculating, at each step, the necessary deviation that must

be applied to the current (linear) velocity of the robot so that the direction of this velocity is tangent to

52

the boundaries of any obstacle that is currently blocking the robot’s path. This is similar to obtaining

the most useful edges of the local tangent graph in an iterative way. By taking this approach, the

control inputs of the robot are modified only in what is strictly necessary to achieve safety, and thus

the interference caused to the different control strategies used throughout navigation is kept to a

minimum.

The following sections review the necessary concepts and fully describe the proposed

solution. Section 5.3 details the operation of the method when dealing with static obstacles, and

Section 5.4 then extends the method to situations with moving obstacles.

5.3 Avoiding Static Obstacles

The obstacle detection algorithms currently in use by the ISocRob team rely on the processing

of images captured by an omnidirectional camera, and provide information about the position of each

obstacle relative to the robot. Current plans are to also include information about each obstacle’s

velocity. No information is given, however, about the shape of said obstacles. In fact, these algorithms

are currently only prepared to detect either the ball or another robot player as an obstacle, based on

their shape and color, and will result in misreadings when confronted with objects that do not possess

these characteristics, such as walls. Considering these limitations, and for the purposes of a robotic

soccer match, it is acceptable to model the expected obstacles as circles in the plane containing the

field of play (the robot’s workspace). The expected number of obstacles is also limited. The rules in

place for the Middle Size Robot League during the development of this work limit the number of

players to six robots in each team. Including the ball and assuming that there are no false detections,

this implies that there is a maximum of twelve detected obstacles at any moment during a match. In

reality, given the dimensions of the field and the fact that obstacle detection fails above a certain

range, the average number of detected obstacles is smaller. The resulting expected environment is

sparse, as stressed previously.

Figure 21: Typical obstacle configuration and shortest path to target.

53

A typical situation where obstacle avoidance is required is depicted in Figure 21. The shortest

possible path between the robot’s current position, S, and its goal position, T, is also shown. Ideally,

the obstacle avoidance algorithm will drive the robot along this path.

At this point it is necessary to review the concepts of visibility graph and tangent graph. For an

environment populated with polygonal obstacles, the visibility graph, (ܧ,ܰ)ܩܸ is the undirected

graph in which the nodes ܰ represent the obstacles vertices and the starting and ending points S and

T, and the edges ܧ connect all nodes that are “visible” from each other, in that there is a line segment

uniting them that does not intersect any other obstacle in configuration space. An important property of

the visibility graph is that it always contains the shortest collision-free path to the target ([40]).

However, this path will take the robot as close as possible to the obstacles it must avoid. It can be

argued that due to sensor noise, the overall safety is reduced by choosing such a path. While this

holds true for many robot applications, in robotic soccer it is often necessary to maneuver close to the

other robotic players, and keeping a maximal distance to these obstacles isn’t always the best

approach. Therefore, in order to account for the presence of noise, the obstacles are inflated in

configuration space by including a safety margin that the robot must respect. If this safety margin is

set too large, some solutions may be overlooked, and so one has to take into consideration the

minimum distance that two adjacent obstacles should have from each other, so that the robot is still

allowed to pass through them. During dribbling operations, the obstacle avoidance algorithm will act

upon the desired motion of the ball, instead of the robot, and so the safety margin has to be set in

such a way that the robot will not collide with any obstacles while rotating around the ball (the safety

margin has to account for the radius of the ball and the diameter of the robot). Other than this detail,

the obstacle avoidance algorithms presented in this chapter can be directly applied to the problem of

transporting a moveable object, and so, the focus will be put, without loss of generality, on the

situations where the motion of the robot is unrestricted.

The tangent graph (்ܧ,்ܰ)ܩܶ is a subgraph of the visibility graph which contains the convex

vertices of the obstacles, the edges that are bi-tangent to them, and those that can be united to S and

T without intersecting any obstacles. In the case of curved obstacles, the boundaries of the obstacles

can be partitioned into convex and non-convex arcs. The edges ்ܧ of the tangent graph are then the

convex arcs of those boundaries, and the line segments that are bi-tangent to them. The nodes ்ܰ

correspond to the intersection points of these line segments with the boundaries of each obstacle, and

the points S and T. Figure 22 shows the tangent graph for the situation represented in Figure 21. It is

also shown in [51] that the tangent graph is the minimal subgraph of the visibility graph that is still

guaranteed to contain the shortest path to the goal. By removing any of its edges, this property would

be invalidated.

In turn, the local tangent graph, or LTG, is the subgraph of the tangent graph that can be

constructed given the incomplete information available to the robot. It is assumed that the robot is able

to detect obstacles in a certain radius around itself, but it cannot possess partial information about an

obstacle, i.e., the obstacle-detection mechanism can be modeled as a binary-valued function. Recall

that each obstacle is modeled as a circle in the robot’s workspace. In these conditions, and in light of

the previous definitions, if the LTG is non-empty, then at least one of its edges belongs to the shortest

path to the goal. The core of the algorithm then lies on selecting the local optimum (greedy) direction

from the edges of the LTG. The directions selected in this way

directions. It is well known that such an algorithm is only guaranteed to converge if the problem has an

optimal substructure, i.e. if the global optimum solution can be obtained by making local optimum

decisions at each step.

Figure 22: Tangent graph for the

From the definition of the LTG, it is evident that in any situa

the graph that connect the robot’s position S to nodes in the boundaries of each obstacle (since there

are two lines passing through any given point that are tangent to a convex region). Let these nodes be

defined as the endpoints ଵܲ,, ଶܲ,

݉ and ݊ of the LTG,)௦ܮ ,݊݉), be defined as the total length of the shortest path on the LTG uniting

and ݉ (the local shortest path between

Proposition 5.1: If there is an endpoint

(ࡼ,ࡿ)࢙ࡸ + (ࢀ,ࡼ)࢙ࡸ for every endpoint

the edge ࢚ࢋ that connects the current position

Proof: Note that)௦ܮ ,ܵܲ) is the length of the

from the fact that ௦൫ܵܮ , ܲ௧൯+ ܮ

passes through ܲ௧ . For an endpoint

௦൫ܲܮ ௧,ܶ൯, then, by definition, none of the edges that connect to

from S to T. Therefore, the edge

movement. ∎

Although the endpoints of each obstacle can be easil

detected obstacles are circles,

complete LTG at every iteration, for every endpoint P.

problem must be simplified further.

path to the goal. The core of the algorithm then lies on selecting the local optimum (greedy) direction

from the edges of the LTG. The directions selected in this way may differ from the global optimum

directions. It is well known that such an algorithm is only guaranteed to converge if the problem has an

substructure, i.e. if the global optimum solution can be obtained by making local optimum

: Tangent graph for the situation represented in Figure

ion of the LTG, it is evident that in any situation, there are at most two edges in

the graph that connect the robot’s position S to nodes in the boundaries of each obstacle (since there

are two lines passing through any given point that are tangent to a convex region). Let these nodes be

 of each obstacle ܱ. Also, let the expected distance between

, be defined as the total length of the shortest path on the LTG uniting

shortest path between ݊ and ݉). The following result then arises:

If there is an endpoint ࢚ࡼ on the LTG such that ࡼ,ࡿ൫࢙ࡸ

endpoint ,ࡼ then a local optimal direction for movement

that connects the current position S to .࢚ࡼ

is the length of the single edge that connects S and P.

൯ ௦൫ܲ ௧,ܶ൯is the total length of the shortest path between S and T

an endpoint ܲ ≠ ܲ௧ that verifies)௦ܮ ,ܵܲ) +)௦ܮ

, then, by definition, none of the edges that connect to ܲ belong to the local shortest path

edge ݁ that connects points S and ܲ is a sub-

Although the endpoints of each obstacle can be easily obtained from the assumption that the

detected obstacles are circles, the calculation of (ܶ,ܲ)௦ܮ requires building and searching the

complete LTG at every iteration, for every endpoint P. Since this is computationally prohibitive, the

be simplified further.

54

path to the goal. The core of the algorithm then lies on selecting the local optimum (greedy) direction

may differ from the global optimum

directions. It is well known that such an algorithm is only guaranteed to converge if the problem has an

substructure, i.e. if the global optimum solution can be obtained by making local optimum

Figure 21.

tion, there are at most two edges in

the graph that connect the robot’s position S to nodes in the boundaries of each obstacle (since there

are two lines passing through any given point that are tangent to a convex region). Let these nodes be

so, let the expected distance between nodes

, be defined as the total length of the shortest path on the LTG uniting ݊

The following result then arises:

൫ +൯࢚ࡼ ≥൯ࢀ,࢚ࡼ൫࢙ࡸ

local optimal direction for movement corresponds to

edge that connects S and P. The proof follows

shortest path between S and T that

(ܲ,ܶ) > ௦൫ܵܮ , ܲ௧൯+

belong to the local shortest path

-optimal direction for

y obtained from the assumption that the

requires building and searching the

Since this is computationally prohibitive, the

Suppose that at any given instant,

obstacle to the goal point do not intersect the boundaries of any other object. In this case, if the direct

path to the goal is blocked by an ob

that connect to the endpoints of this obstacle.

that is not blocking the robot in this manner is necessarily part of a longer path to

seen that, by making this assumption, the robot can be mislead in certain situations, making the

algorithm incomplete. The TangentBug algorithm deal

the boundaries of a certain obstacle, which in turn requires

in which the objects are modeled as walls and tracked

information about the connectivity

completely reactive, not only for computation

following concepts presented by TangentBug

above assumption, however, the problem of se

the two endpoints of the obstacle

similar implementation is described in

Figure 23: Relevant geometric details for obstacle avoidance.

Consider the situation depicted in

,ோݒ which is assumed constant between control cycles.

and its goal is ீ݀. An obstacle is detected at distance

the velocity vector. The radius of the obstacle is

between a line aligned with the velocity vector and the centr

Consequently, if ݀ > ݀

velocity remains constant. This constitutes

obstacle. The minimum angle ߚ that satisfies

Suppose that at any given instant, the line segments that connect the endpoints of each

obstacle to the goal point do not intersect the boundaries of any other object. In this case, if the direct

path to the goal is blocked by an obstacle, the only candidates for optimal directions are the edges

that connect to the endpoints of this obstacle. This is easily verified geometrically, since any obstacle

that is not blocking the robot in this manner is necessarily part of a longer path to

seen that, by making this assumption, the robot can be mislead in certain situations, making the

The TangentBug algorithm deals with this situation by forcing

obstacle, which in turn requires a non-reactive component

in which the objects are modeled as walls and tracked through consecutive iterations, maintaining

connectivity between them. In this case however, the algori

completely reactive, not only for computational issues, but also because most

following concepts presented by TangentBug do not hold true for moving obstacles.

above assumption, however, the problem of selecting the local optimal direction reduces to obtaining

the two endpoints of the obstacle (or obstacles) directly in front of the robot in configuration space

similar implementation is described in [52].

: Relevant geometric details for obstacle avoidance.

situation depicted in Figure 23. The robot heads towards its goal

, which is assumed constant between control cycles. The (Euclidean) distance between the robot

An obstacle is detected at distance ை݀௦, and at a certain angle

The radius of the obstacle is ௌ݀. In these conditions, the minimum distance

between a line aligned with the velocity vector and the centre of the obstacle is given by:

݀ = ை݀௦sin (ை௦ߙ)

ௌ݀ and ை݀௦ ≤ ீ݀, the robot will not collide with the obstacle if its

velocity remains constant. This constitutes a safety condition that must be verified for

that satisfies ݀ ≥ ௌ݀ is then:

55

the line segments that connect the endpoints of each

obstacle to the goal point do not intersect the boundaries of any other object. In this case, if the direct

stacle, the only candidates for optimal directions are the edges

This is easily verified geometrically, since any obstacle

that is not blocking the robot in this manner is necessarily part of a longer path to the target. It will be

seen that, by making this assumption, the robot can be mislead in certain situations, making the

forcing the robot to follow

ponent in the algorithm,

through consecutive iterations, maintaining

In this case however, the algorithm should be kept

al issues, but also because most of the boundary-

hold true for moving obstacles. By following the

lecting the local optimal direction reduces to obtaining

in configuration space. A

: Relevant geometric details for obstacle avoidance.

heads towards its goal T with velocity

The (Euclidean) distance between the robot

, and at a certain angle ை௦ߙ relative to

. In these conditions, the minimum distance

e of the obstacle is given by:

(5.1)

collide with the obstacle if its

that must be verified for each detected

56

ߚ =

⎩
⎨

⎧asinቆ
ௌ݀

ை݀௦

ቇ ݂݅ ை݀௦ ≥ ௌ݀

ߨ

2
ℎݐ ݓݎ݁ ݏ݅݁

� (5.2)

The definition of ߚ =
గ

ଶ
happens whenever the robot is already inside the radius of the obstacle in

configuration space, which may happen in the dimensions of the obstacle are overestimated. By

following this direction, the robot will eventually reach the boundaries of the obstacle in configuration

space. Therefore, whenever a collision is bound to happen, the robot must apply a certain detour

angle ߛ to its velocity so that the safety condition is satisfied. The minimum detour angle is such that:

ை௦ߙ| + |ߛ = ߚ (5.3)

The two possible solutions, one for each endpoint, are then:

ଵ,ଶߛ = ை௦ߙ− ± ߚ (5.4)

The minimal solution is,

ߛ = ߛ , ݉ = arg min
∈{ଵ,ଶ}

|ߛ| (5.5)

Note that, for the single-obstacle case, this is in fact equivalent to calculating the endpoint ܲ௧

with the minimal expected distance to the target and sending the robot along the corresponding edge

of the LTG. In more complex situations, however, the endpoints must be explicitly calculated. Suppose

that ோߙ = ݐܽܽ (ோ௫ݒ,ோ௬ݒ)2݊ is the angle of the velocity vector in the robot’s frame. The endpoints (ܲଵ,ଶ),

of the obstacle ܱ in this frame are then:

ܲ, = [ை݀௦cosߚ cos(ߛ+ (ை௦ߙ ை݀௦cosߚ sin(ߛ+ ்[(ை௦ߙ (5.6)

The expected path length (ܶ,ܲ)௦ܮ between these endpoints and the goal can then be

approximated as the length of the line segment between P and T,

(ܶ,ܲ)௦ܮ = ‖ܲ− ܶ‖ (5.7)

The above results would provide optimal paths for obstacle avoidance in environments with a

single obstacle and assuming that the robot is under velocity control. For environments with multiple

obstacles, situations may arise where obstacles are close enough so that they are effectively “merged”

in configuration space. This occurs whenever two obstacles are separated by a distance inferior to

2 ௌ݀. These obstacles are, however, still considered as two separate obstacles by the robot. In

these conditions, some configurations of obstacles would lead the algorithm into oscillatory motion,

namely whenever two or more endpoints have the same expected path length.

value of (ܶ,ܲ)௦ܮ is weighted with the detour angle

endpoints ܲ, is then defined as:

൫ܲܥ ,൯

with ଵܿ, ଶܿ > 0 and ଵܿ + ଶܿ = 1 . It is evident that

represents the robot’s “preference” for the paths that demand less turning effort

Figure 24: Obstacle avoidance for multiple

For an environment populated with multi

more than one detected obstacle)

presented in Figure 24. A cluster of obstacles is preventing the robot from reaching the goal directly.

However, the direction taken through the optimal endpoint (the

intersects a different cluster of obstacles placed farther away from the robot. In this situation, the

direction remains safe if the distance between these two cluster

outermost obstacles, is greater than

in configuration space and that there is enough space between them for the robot to pass.

turn, may lead to a problem of “shadowing”, where obstacles that are not visible from S may exist that

actually connect the two clusters in configuration space, invalidating the original decision

direction taken by the robot does not belong to the LTG. Without expressing the connectivity between

the obstacles in the configuration space, this situation is inevit

recover from this situation once the shadowed obstacles become visible.

The general procedure to

represented in Figure 25. The following steps are performed:

1) Identify the original obstacle that violates the safety condition for the

2) The two possible detour angles for that obstacle are calculated a

results in one positive solution and one negative solution

߁ = ଵߛ] .[ଶߛ The respective endpoints are calculated according to

whenever two or more endpoints have the same expected path length. To account for this, the

ghted with the detour angle .ߛ For every obstacle ܱ, the

is then defined as:

൫ ൯= ଵܿ

௦൫ܲܮ ,,ܶ൯

max ௦൫ܲܮ} ଵ,,ܶ൯,ܮ௦൫ܲ ଶ,,ܶ൯}
+ ଶܿ

|ߛ|

ߨ

. It is evident that ൫ܲܥ ,൯ returns values in the

’s “preference” for the paths that demand less turning effort.

: Obstacle avoidance for multiple obstacles and the presence of “shadowed”

obstacles.

For an environment populated with multiple isolated obstacles or clusters of obstacles

more than one detected obstacle), the safety condition must be reformulated. Consid

. A cluster of obstacles is preventing the robot from reaching the goal directly.

However, the direction taken through the optimal endpoint (the endpoint that minimizes

intersects a different cluster of obstacles placed farther away from the robot. In this situation, the

istance between these two clusters, ݀, taken from the centers of the

greater than 2 ௌ݀, which is to assume that these clusters are not connected

in configuration space and that there is enough space between them for the robot to pass.

turn, may lead to a problem of “shadowing”, where obstacles that are not visible from S may exist that

t the two clusters in configuration space, invalidating the original decision

direction taken by the robot does not belong to the LTG. Without expressing the connectivity between

the obstacles in the configuration space, this situation is inevitable. However, the robot will be able to

recover from this situation once the shadowed obstacles become visible.

The general procedure to detect the endpoints for an obstacle or a cluster

The following steps are performed:

the original obstacle that violates the safety condition for the current velocity;

he two possible detour angles for that obstacle are calculated according to

e positive solution and one negative solution. These solutions are registered in set

. The respective endpoints are calculated according to (5.6).

57

To account for this, the

he cost of one of its

(5.8)

returns values in the [0,1] interval, and

obstacles and the presence of “shadowed”

clusters of obstacles (i.e. for

, the safety condition must be reformulated. Consider the situation

. A cluster of obstacles is preventing the robot from reaching the goal directly.

endpoint that minimizes (5.8))

intersects a different cluster of obstacles placed farther away from the robot. In this situation, the

, taken from the centers of the

that these clusters are not connected

in configuration space and that there is enough space between them for the robot to pass. This, in

turn, may lead to a problem of “shadowing”, where obstacles that are not visible from S may exist that

t the two clusters in configuration space, invalidating the original decision, since the

direction taken by the robot does not belong to the LTG. Without expressing the connectivity between

the robot will be able to

cluster of obstacles is

current velocity;

ccording to (5.4). This always

. These solutions are registered in set

3) For the endpoint that minimizes

 If the solution is safe, update the robot’s velocity and return;

 Otherwise, the robot is in the p

obstacle that currently

4) Using equation (5.4), once again, two solutions are generated. One of these solutions is

invalid, since it would necessarily violate the safety condition for the previo

obstacle. Update ߁ by overwri

angle of the valid solution

solution.

 If the optimal endpoint implies

 Otherwise, return

Figure 25: Endpoint calculation

each obstacle areࡻ shown as

valid solution, which i

By performing the above steps, the resulting solution

cluster that minimizes the cost function

obstacle avoidance will be attained for env

5.4 Avoiding Moving Obstacles

All considerations for the static obstacles case were made taking into account that the

instantaneous velocity of the robot needed to be altered by a certain

collisions. These concepts are easily adaptable for an environment

For the endpoint that minimizes ൫ܲܥ ,൯, the safety condition is re-checked

If the solution is safe, update the robot’s velocity and return;

the robot is in the presence of an obstacle cluster. Select the individual

currently violates the safety condition and continue to step 4;

, once again, two solutions are generated. One of these solutions is

invalid, since it would necessarily violate the safety condition for the previo

by overwriting the element with the same algebraic sign as the

valid solution. Update the respective endpoint and re-evaluate the minimal

the optimal endpoint implies |ߛ| > ,ߨ the goal is unreachable. Return.

eturn to step 3.

calculation for an obstacle cluster. The two possible detour angles for

are shown as ,ࢽ
 . Note that for every obstacle except ࡻ

valid solution, which is either a positive (red) or negative (blue) detour.

By performing the above steps, the resulting solution will be the endpoint of the obstacle

cluster that minimizes the cost function (5.8). By adjusting the robot’s velocity at

obstacle avoidance will be attained for environments with static obstacles.

Moving Obstacles

All considerations for the static obstacles case were made taking into account that the

instantaneous velocity of the robot needed to be altered by a certain detour angle

collisions. These concepts are easily adaptable for an environment with moving obstacles, by

58

checked:

resence of an obstacle cluster. Select the individual

continue to step 4;

, once again, two solutions are generated. One of these solutions is

invalid, since it would necessarily violate the safety condition for the previously selected

the element with the same algebraic sign as the detour

evaluate the minimal cost

, the goal is unreachable. Return.

for an obstacle cluster. The two possible detour angles for

 there is only one

s either a positive (red) or negative (blue) detour.

will be the endpoint of the obstacle

By adjusting the robot’s velocity at every iteration,

All considerations for the static obstacles case were made taking into account that the

detour angle in order to avoid

with moving obstacles, by

addressing instead the relative velocity between

possess a certain velocity ைݒ , which is assumed constant throughout each cycle of the obstacle

avoidance algorithm, it is necessary

velocity, so that the robot avoids any incoming obstacles in its frame.

concern the situation where a single moving obstacle must be avoided. The extension

obstacles is trivial, since it follows the same procedure as for the static obstacles case.

Figure

Let the robot velocity and the velocity of a moving obstacle be defined, in the robot frame, as

ோݒ = ቂݒோ௫ ோ௬ቃݒ
்

and ைݒ = ቂݒை௫ ݒ

ோாݒ =

Also, let beߦ the angle between the

Figure 26. The objective is then to

velocity satisfies the necessary conditions to avoid collision, namely that

(refer to last section for details).

that:

and ߛ is obtained in the same manner as in the previous section.

case, the expected path length from the moving obstacle’s endpoints is

lead to wrong results, so the optimality criterion becomes th

direction at each control cycle. It is imperative to n

velocity. The robot requires an updated velocity

properties must be verified for ோݒ
ᇱ

addressing instead the relative velocity between these obstacles and the robot.

which is assumed constant throughout each cycle of the obstacle

avoidance algorithm, it is necessary to obtain the detour angle that must be applied to the

velocity, so that the robot avoids any incoming obstacles in its frame. The remainder of this section will

concern the situation where a single moving obstacle must be avoided. The extension

obstacles is trivial, since it follows the same procedure as for the static obstacles case.

Figure 26: Avoiding a moving obstacle.

Let the robot velocity and the velocity of a moving obstacle be defined, in the robot frame, as

ை௬ቃݒ
்

respectively. The relative velocity is then:

= ோ௫ݒ] − ை௫ݒ ோ௬ݒ − ்[ை௬ݒ = ቂݒோா௫ ோா௬ቃݒ
்

be the angle between the robot frame’s x-axis and the relative velocity vector, as depicted in

. The objective is then to define a direction for the robot’s velocity so that the

velocity satisfies the necessary conditions to avoid collision, namely that ݀ >

(refer to last section for details). The updated relative velocity ோாݒ
ᇱ then possesses an angle

=ᇱߦ +ߦ =ߛ atan2ቀݒோா
ᇱ

௬
ோாݒ,

ᇱ
௫
ቁ

is obtained in the same manner as in the previous section. Note that in the moving obstacles

case, the expected path length from the moving obstacle’s endpoints is totally unpredictable

lead to wrong results, so the optimality criterion becomes the necessary deviation from the original

It is imperative to note that one acts only indirectly upon

velocity. The robot requires an updated velocity ோݒ
ᇱ so that ோாݒ

ᇱ is achieved in turn

ோ
ᇱ:

59

these obstacles and the robot. If the obstacles

which is assumed constant throughout each cycle of the obstacle

to obtain the detour angle that must be applied to the relative

The remainder of this section will

concern the situation where a single moving obstacle must be avoided. The extension for multiple

obstacles is trivial, since it follows the same procedure as for the static obstacles case.

Let the robot velocity and the velocity of a moving obstacle be defined, in the robot frame, as

(5.9)

ty vector, as depicted in

so that the updated relative

> ௌ݀ if ை݀௦ ≤ ீ݀

then possesses an angle ,'ߦ such

(5.10)

Note that in the moving obstacles

unpredictable and can

e necessary deviation from the original

ote that one acts only indirectly upon the relative

in turn. The following

60

atan2ቀݒோ
ᇱ
௬
− ோݒ,ை௬ݒ

ᇱ
௫
− =ை௫ቁݒ ᇱߦ (5.11)

ோݒ‖
ᇱ‖ = ‖ோݒ‖ = ோܸ (5.12)

Again, referring to Figure 26, let ோߙ be the angle of ோݒ in the robot’s frame, and ோܸ its norm, so

that ோ௫ݒ = ோܸcos(ߙோ) and ோ௬ݒ = ோܸsin(ߙோ). Equation (5.11) can then be rewritten as:

atan2 ቀܸ ோsin ோߙ)
ᇱ) − ,ை௬ݒ ோܸcos(ߙோ

ᇱ) − =ை௫ቁݒ ᇱߦ (5.13)

The problem is now to obtain ோߙ
ᇱ so that (5.13) is verified.

Proposition 5.2: At each control cycle, the necessary angle ࡾࢻ
ᇱ that must be applied to the robot’s

velocity ࡾ࢜
ᇱ, so that an incoming obstacle is avoided in the conditions of Figure 26, is given by one of

two possible solutions:

ோߙ
ᇱ = asinቆ

− tan(ߦᇱ)ݒை௫ + ை௬ݒ

ோܸඥ1 + tanଶ(ߦᇱ)
ቇ+ ᇱߦ ∨ ோߙ

ᇱ = − asinቆ
− tan(ߦᇱ)ݒை௫ + ை௬ݒ

ோܸඥ1 + tanଶ(ߦᇱ)
ቇ+ ᇱߦ (5.14)

Proof: Equation (5.13) can be used carefully by noting that if the normal 2-quadrant tangent is used

instead of the 4-quadrant tangent, then two possible solutions for ோߙ
ᇱ exist. These are the solutions to

the following relation:

ோܸ sin(ߙோ
ᇱ) − ை௬ݒ

ோܸcos(ߙோ
ᇱ) − ை௫ݒ

= tan(ߦᇱ) (5.15)

From this, and after some manipulation,

sin(ߙோ
ᇱ) − tan(ߦᇱ) cos(ߙோ

ᇱ) =
− tan(ߦᇱ)ݒை௫ + ை௬ݒ

ோܸ

(5.16)

Using now the following trigonometric relation,

ܽsin(ߠ) − ܾcos(ߠ) = ඥ ଶܽ + ଶܾ sin൬ߠ− atan൬
ܾ

ܽ
൰൰ (5.17)

Equation (5.16) can then be seen to be equivalent to,

ඥ1 + tanଶ(ߦᇱ) sin(ߙோ
ᇱ − (ᇱߦ =

− tan(ߦᇱ)ݒை௫ + ை௬ݒ

ோܸ

(5.18)

61

Solving for ோߙ
ᇱ, it results that:

ோߙ
ᇱ = ±asinቆ

ݐܽ− ை௫ݒ(ᇱߦ)݊ + ை௬ݒ

ோܸඥ1 + ݐܽ ݊ଶ(ߦᇱ)
ቇ+ ᇱߦ (5.19)

∎

5.5 Obstacle Avoidance for Dribbling and Interception

The methods for obstacle avoidance presented so far can be directly applied to tasks that

involve unrestricted velocity control of an omnidirectional robot (such as posture stabilization). For

situations that require torque control of the mobile robot, the proposed obstacle avoidance algorithm

can still be applied, albeit with some modifications. For these cases, the robot’s acceleration is

piecewise constant, but the robot’s trajectory is not necessarily linear between two control cycles

(though it can be approximated by an arc of a circle). However, if the robot’s linear acceleration

maintains a constant direction over time (in the world frame), its path eventually converges towards a

linear form in finite time, due to the saturation limits of its actuators. It is therefore reasonable to

require that, at each control cycle, the velocity of the robot should be considered safe according to the

definitions of the previous sections. This, in turn, can be assumed as a sufficient condition for safety if

the time step used during navigation is small enough.

To achieve this, the linear velocity of the robot on the next control cycle is predicted given its

current torque inputs ,ࢇ and the acceleration that is required to make this velocity safe, ࢇ
ᇱ, is then

obtained:

ோାଵ࢜ = ோ࢜ + ܶࢇ (5.20)

ࢇ
ᇱ =

1

ܶ
൫࢜ோାଵ

ᇱ − ோ൯࢜ (5.21)

where the direction of ோାଵ࢜
ᇱ is considered “safe”. Note that, the so-obtained acceleration command

may exceed the dynamic capabilities of the robot. This is dealt with on a task-specific basis, such as

the methods presented in 3.4.

This form of obstacle avoidance in torque-control form may then be applied to the tasks of

object transport and interception. During object transport, it is sufficient to apply these concepts to the

required force ࢌ supplied by the object controller (see Section 4.3.2) and to redefine the radius of the

modelled obstacles in configuration space. For moving object interception, since both IPNG and

trajectory tracking supply controls in acceleration form, it is also possible to use the proposed obstacle

avoidance algorithms to avoid the ball until the robot satisfies the physical restrictions inherent to that

task, so as to prevent the ball from escaping at the moment of collision. If other dynamic obstacles are

present in its environment, the robot will also be able to avoid them whilst converging towards the

desired interception trajectory.

62

6 Experimental Setup

In this section, the robotic platform that was used to test the motion control solutions presented in

this work is briefly described with respect to its relevant characteristics for motion control, as well as

the environment in which the tests were performed.

6.1 The OmniISocRob Platform

Figure 27: The robotic soccer platform currently used by the ISocRob team.

The ISocRob team is currently comprised of five omnidirectional robots, each with the

following main characteristics that are relevant for motion control:

Physical dimensions:

 Each robot is equipped with three Swedish wheels. The radius of each wheel is 10 cm. A set

of rollers are placed around the borders of each wheel, each with an axis of rotation

orthogonal to that of the wheel;

 The robot’s chassis has an hexagonal footprint, such that distance from the geometric center

of the chassis and each wheel is 20 cm;

 On one of its sides, the robot possesses two pairs of passive, flexible flippers (or fingers)

which are intended to keep the ball from escaping during dribbling (see Figure 28). The

horizontal distance between the two flipper pairs is 22 cm;

 When fully loaded (as during a robotic soccer match), each robot weighs approximately 22.8

Kg;

63

Figure 28: Relevant components and dimensions of the OmniISocRob platform

Main hardware components:

 A NEC Versa FS900 laptop, where most of the processing takes place. Each of these laptops

has an Intel Centrino 1.6Ghz processor, and 512Mb of RAM;

 Each of the robot’s wheels is actuated by a MAXON DC motor RE35/118776. This motor

achieves a maximum angular velocity of ߱ெ
 ≅ 30 rad/s . A soft-limit for the maximum

angular acceleration of these motors was set at ெߙ
 = 22 rad/sଶ. Between each motor and

its respective wheel, a MAXON gear 203118 is placed, with a reduction of 21:1.

 The control of the motors is done through Master-Slave PIC controllers. The communication

between the laptop and the Master PIC is done at (approximately) 30Hz;

 A 500 CPR encoder is present in each wheel;

 A Marlin AVT F033C firewire camera is placed, facing downward, on top of the robot (see

Figure 27). The dioptric vision system utilizes a fish-eye lens, and allows for omnidirectional

vision;

 An AnalogDevices XRS300EB rate-gyro.

Relevant software features:

 The self-localization of the robot is accomplished through a Monte-Carlo Localization

algorithm, described in [53]. Although the robot is able to localize itself anywhere on the field

of play, the algorithm itself continuously tries to correct any self-localization errors. For this

reason, consecutive measures of the posture of the robot taken by this algorithm present, in a

typical situation, a standard deviation of ௦ߪ ≅ 4 cm in position and ఏߪ ≅ 0.03 rad in

orientation. This value depends on the specific part of the field that the robot is on, and the

velocity of the robot.

 The obstacle detection algorithm relies on the color-based segmentation of the images taken

by the robot’s omnidirectional camera, and the subsequent search for contiguous, black-

colored, areas, which are assumed to be obstacles. To improve computational efficiency, the

64

image itself is divided into a discrete number of radial areas (in this particular case, 16). While

this algorithm isn’t particularly reliable, it provides obstacle detection up to 5 m.

 A new ball-detection algorithm is being developed concurrently to this work, which relies on a

particle-filter based approach. This algorithm provides reliable detection of the ball at a

distance of up to 5 m with the omnidirectional camera, and also provides information about its

velocity.

6.2 The Experimental Environment

The motion control solutions presented in the previous chapters were implemented as part of

the MeRMaID architecture of the ISocRob team. However, at present, the controllers of the robot’s

actuators were not yet adapted to provide torque control. Due to this fact, the motion control solutions

that require torque control were instead tested inside the Webots simulation environment, where the

OmniISocRob platform was modelled according to its physical properties and capabilities described

above. The tasks that were tested inside Webots were:

 Tracking a reference trajectory, using the control laws presented in Section 3.2, both

with a continuous-time approximation and as a discrete-time control law, and the

orientation control law presented in Section 3.3.2;

 The task of intercepting a moving object, described in Section 4.2;

 The task of transporting a moveable object, described in Section 4.3.

Conversely, the following tasks were tested in the real ISocRob robots, in addition to the

Webots simulations:

 The task of stabilizing the robot around a reference posture, according to the control

laws presented in Section 3.1 and 3.3.1;

 The obstacle avoidance methods presented in Section 5.

The experiments that were performed in the Webots simulation environment were conducted

inside a robotic soccer field that complies with the current RoboCup regulations (12m x 18m). Inside

the field, a maximum of ten obstacles may be detected by the robot, corresponding to the other robots

and the ball. The range of detection of the ball and of the obstacles in the environment was set at 5 m.

The real field used by the ISocRob team is a rectangular (4.5 m x 9m) field shown in Figure 29.

This field may be populated with at most four other obstacles.

65

(a)

(b)

Figure 29: The robotic soccer field.

(a): the soccer field used inside the Webots simulation environment.

(b): the soccer field used by the ISocRob team.

The soccer ball that was used while testing the object interception and transport tasks was a

standard, RoboCup compliant, soccer ball, with a radius of 11 cm and a mass of 0.45 Kg. This implies

that, while the robot is holding the ball, the ball fits within its flippers with a negligible amount of “slack”.

The coefficient of rolling friction between the ball and the soccer field was measured at ܥ ≈ 0.015

(this value was also used inside Webots).

Figure 30: A soccer ball compliant with the RoboCup regulations.

66

7 Results

In this chapter, experimental results are shown, and discussed, for each of the motion control

solutions proposed in the previous chapters, in order to ascertain the validity of those solutions.

7.1 Posture Stabilization

In the experiments that were performed to test the posture stabilization process, from the initial

conditions presented in Table 1, the robot was tasked with achieving the reference posture ݍ =

[0 0 0]்.

Table 1: Initial conditions for the posture stabilization experiments.

x

(m)

y

(m)

θ

(rad)

vx

(m/s)

vy

(m/s)

ω

(rad/s)

Initial

Value
0 3 0 0 0 0

The closed loop poles for position (a single pole for each component) were placed at =ݏ

−1.4 rad/s . For orientation, the closed loop pole was set directly in the Z-plane at =ݖ 0.89 (see

Section 3.3.1). The average time step of the control algorithms was measured at തܶ= 45 ms with a

standard deviation of ߪ் = 13 ms. The response of the system is shown in Figure 31, which include the

robot’s position during stabilization and its velocity in the robot’s frame, as obtained both in the Webots

simulation environment and in the real ISocRob robots. The correlation between the simulated data,

which was obtained using the discrete-time control law (3.12), and the data obtained from the physical

system, through the application of both the continuous-time approximation of (3.2) and the exact

control law (3.12) is described in Table 2. The settling times (to 5% of their final value) of the

components of the robot’s posture are also shown.

Table 2: Correlation coefficients and settling times for the point stabilization experiment.

x y θ vx vy ω

Correlation between

real (exact) and

simulated data, rE

0.989 0.986 0.974 0.908 0.805 0.682

Correlation between

real (approx.) and

simulated data rA

0.975 0.917 0.934 0.711 0.165 0.763

Settling time

(5%, simul.), tSS (s)
4.77 5.01 4.89 - - -

Settling time

(5%, exact), tSE (s)
5.80 6.67 3.33 - - -

Settling time

(5%, approx.), tSA (s)
9.07 8.94 4.28 - - -

67

Figure 31: Response of the closed-loop system during posture stabilization. The presented

velocity components are taken in the robot’s frame.

Even though there is agreement between the real and simulated data, the most noticeable

aspect of the robot’s motion is that there is significant overshoot in one of the robot’s position

components (with this choice of initial conditions, this overshoot occurs along the ݕ component, to

about 30% of the initial value). Besides unmodeled factors such as wheel slippage, and unreliability in

the determination of the robot’s velocity, this is mostly due to the acceleration limits of the robot’s

actuators, which, by having to account for both linear and angular velocity, are unable to preserve the

0 2 4 6 8
-3

-2

-1

0

1

time (t /s)

x
/m

Position (x)

0 2 4 6 8
-1

-0.5

0

0.5

1

time (t /s)

v x
/m

/s

Velocity (v
x
) (Robot Frame)

0 2 4 6 8
-1

0

1

2

time (t /s)

y
/m

Position (y)

0 2 4 6 8

-1

-0.5

0

0.5

1

Velocity (v
y
) (Robot Frame)

time (t /s)

v y
/m

/s

0 2 4 6 8
-1

0

1

2

3

4

time (t /s)

th
e
ta

/r
a
d

Orientation (Theta)

0 2 4 6 8
-4

-2

0

2

time (t /s)

w
/r

a
d
/s

Velocity (w)

68

expected linear trajectory of the robot. To avoid this situation altogether, the closed-loop poles would

have to be moved to slower locations, which would result in longer settling times for distant goal

postures. As an alternative, the acceleration limits of the actuators could be raised, but the increased

effort would lead to the fast deterioration of the actuators. Notwithstanding the presence of these

errors, it is clear that the discrete-time control law (3.12) provides superior performance than the finite-

difference approximation of (3.2), especially with respect to the closed loop system’s settling time.

However, it is verified that both of these solutions successfully solve the posture stabilization problem

for a holonomic robot.

7.2 Obstacle Avoidance

Two situations are presented to test the obstacle avoidance algorithm: to achieve posture

stabilization in a setting with sparsely distributed static obstacles; and to escape a common local-

minimum situation. Similarly to the original posture stabilization experiment, in both cases the robot

must achieve the goal posture = [0 0 0]். In this case, however, the orientation of the robot is

not considered, since it is not directly linked to the obstacle avoidance process, and would therefore

make it harder to evaluate any sources of error.

For the first experiment, the robot is left, initially stopped, at position = ݔ] ்[ݕ with

ݔ = −3.5 m and ݕ = 0 m. The positions of the obstacles, as well as the path taken by the robot

around them to its goal position, are shown in Figure 32.

Figure 32: Obstacle avoidance with a typical obstacle configuration. The black filled circles

represent the static obstacles in the environment, and the green circles around them represent

the safety distance that the robot must keep.

It should be noted that, even though some of the measurements of the robot’s position in the

real system lie inside of the radii of safety of certain obstacles, the robot itself was verified to avoid

69

these obstacles and reach its goal safely, and so these situations are recognized as self-localization

errors (it would otherwise be impossible for the robot to occupy those positions). Since obstacle-

detection is relative to the robot’s posture and therefore free from these errors, this carries no meaning

to the correct execution of the obstacle avoidance algorithm.

In a second situation, the robot is placed inside a “U-shaped” formation of obstacles, as

depicted in Figure 33. Its initial position is given by ݔ = −2.5 m and ݕ = 0 m. Both in the real and

simulated experiments, the robot is seen to successfully detect the endpoints of this cluster of

obstacles, according to the algorithm described in Section 5.3, and is thus able to escape the local

minimum situation and reach its goal safely.

Figure 33: Escaping a local minimum situation.

7.3 Posture Tracking

To test the validity of the proposed posture tracking solution, the robot is tasked with tracking a

freely moving object on the field of play with constant acceleration, by maintaining a fixed distance to

the object (in this case, 1 m) and so that the robot is oriented towards it (i.e. the relative angle of the

object in the robot’s frame, ைߠ , is zero). The initial conditions for these experiments are described in

Table 3, where {ூݕ,ூݔ} denote the position that the robot must attain, and ቄݒை௫,ݒை௬ቅ the reference

velocity. The acceleration of the object is given by ைܽ௫
= ைܽ௬

= −0.025 m/s
2
, in the world frame.

Table 3: Initial conditions for the posture tracking experiments.

x

(m)

y

(m)

θ

(rad)

vx

(m/s)

vy

(m/s)

ω

(rad/s)

xI

(m)

yI

(m)

vOx

(m/s)

vOy

(m/s)

Initial

Value
0 3 0 0 0 0 1 -1 1 1

70

Figure 34: Position and linear velocity (world frame) of the robot during trajectory tracking, as

well as the angle between the robot and the object in the robot’s frame.

The closed loop system is critically damped with ଵߣ = ଶߣ = 1 . The average time step was

തܶ= 40 ms with a standard deviation of ߪ் = 1.5 ms . These results show that the robot is able to

simultaneously track a given trajectory for position while maintaining an independent reference for

orientation. While the finite-difference approximation of control law (3.16) is shown to successfully

solve the point-tracking problem, under the direct application of the discrete-time control law (3.20) the

system displays oscillatory behavior. This arises not only from the variations in the elapsed time

0 2 4 6 8
0

2

4

6

8

time (t /s)

x
/m

Position (x)

0 2 4 6 8
-1

0

1

2

time (t /s)

v x
/m

/s

Velocity (v
x
)

0 2 4 6 8
-2

0

2

4

6

time (t /s)

y
/m

Position (y)

0 2 4 6 8
-1

-0.5

0

0.5

1

1.5

time (t /s)

v y
/m

/s

Velocity (v
y
)

0 2 4 6 8
-2

-1

0

1

time (t /s)

th
e
ta

O
/r

a
d

Relative Angle (Robot Frame)

71

between consecutive iterations (since, even if these variations are not significant, they introduce error

into the discretization operations performed in Section 3.2), but mainly from difficulties in

synchronizing the inflow of information from the sensors (the sensors that are responsible for

determining the robot’s position and velocity run at different frequencies, which may vary as well).

Since, in the MeRMaID architecture the sampling intervals cannot be set to a constant value, this

invalidates the usage of control law (3.20) in this situation, albeit it may still retain its usefulness in

more restricted environments. For the practical requirements of the ISocRob team, it is clear through

this analysis that the finite-difference approximation of (3.16) displays superior results.

7.4 Moving Object Interception

The simulations made in the Webots environment, to confirm the proposed solution to the

moving object interception problem, consisted of having the robot intercept a freely rolling ball,

travelling along an initially linear path, as soon as it entered its detection range. To establish whether

the proposed solution is more efficient, by relying on Ideal Proportional Navigation and trajectory

tracking, than a solution that relies on trajectory tracking alone, both of these approaches are

compared. Two situations are considered: in the first experiment, the ball is left along an unobstructed

path; also, to verify the robustness of the proposed solution to unexpected variations in the motion of

the ball, a situation is considered where the ball collides with an obstacle in the environment during

interception. The initial conditions for both of these experiments are presented in Table 4, where, as

before, {ூݕ,ூݔ} represents the desired position of the robot, which in this case defines the interception

trajectory (see Section 4.2.2), and ቄݒ௫,ݒ௬ቅare the components of the ball’s velocity. As in the

posture tracking experiment, the acceleration of the ball was set to ܽ௫
= ܽ௬

= −0.025 m/sଶ. In this

setting, the angle between the robot and the ball in the robot’s frame is .ߠ

The results for the first experiment are shown in Figure 35 and Figure 37. Both with the

proposed solution and simple trajectory tracking, the robot is able to intercept the ball and come to a

full stop. The total required time for interception, using the proposed solution, was =௧௧ݐ 8.50 s

utilizing the approach described in Section 4.2, and =௧௧ݐ 9.16 s using an approach based

completely on trajectory tracking. The control-switching instants (refer to Section 4.2.7) are ௌଵݐ =

1.59 s, ௌଶݐ = 4.58 s and ௌଷݐ = 6.87 s. It is then verified that the application of a LOS-relative acceleration

command effectively shortens the interception process. This is due to the fact that, between instants

ௌଵandݐ ௌଶݐ (see Figure 37), when IPNG is active, the distance to the ball decreases in an approximately

linear manner, which, under these circumstances, is faster than the exponential decay of the trajectory

tracking control law.

It can be seen through Figure 35 that the sensors that return the velocity of the ball have some

amount of associated noise, even during simulation. The measurements of the velocity of the ball

were verified to possess a standard deviation of ௩ߪ ≅ 0.04 m/s. While it is expectable that there should

be a greater amount of noise involved in the measurements performed by a real robotic system, this

already indicates that the presented algorithms are still capable of achieving a successful interception

in the presence of these errors.

72

Table 4: Initial conditions for the ball interception experiments.

x

(m)

y

(m)

θ

(rad)

vx

(m/s)

vy

(m/s)

ω

(rad/s)

xI

(m)

yI

(m)

vBx

(m/s)

vBy

(m/s)

Initial

Value
-2 -2 0 0 0 0 -1 -3 0.7 0.7

Figure 35: Position and linear velocity (world frame) of the robot, as well as the distance and

relative angle to the ball, during the first interception experiment.

0 2 4 6 8 10
0

2

4

6

time (t /s)

||q
R
-q

B
||

Distance to the Ball

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

time (t /s)

th
e
ta

O
/r

a
d

Relative Angle to the Ball (Robot Frame)

0 2 4 6 8 10
-2

0

2

4

6

time (t /s)

x
/m

Position (x)

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

time (t /s)

v x
/m

/s

Velocity (v
x
)

0 2 4 6 8 10
-4

-2

0

2

4

time (t /s)

y
/m

Position (y)

0 2 4 6 8 10
-1

-0.5

0

0.5

1

time (t /s)

v y
/m

/s

Velocity (v
y
)

73

For the second experiment, the ball collides with an object in the environment (placed

at =ݔ 1 m; =ݕ −1 m) , after being detected by the robot and thus during interception, at ≅ݐ 1.7 s. The

results are shown in Figure 36 and Figure 38. In this situation the advantages of proportional

navigation over conventional tracking methods are more evident.

Figure 36: Position and linear velocity (world frame) of the robot, as well as the distance and

relative angle to the ball, during the second interception experiment.

0 2 4 6 8 10
0

2

4

6

time (t /s)

||q
R
-q

B
||

Distance to the Ball

0 2 4 6 8 10 11
-1.5

-1

-0.5

0

0.5

time (t /s)
th

e
ta

B
/r

a
d

Relative Angle to the Ball (Robot Frame)

0 2 4 6 8 10
-6

-4

-2

0

2
Position (x)

time (t /s)

x
/m

0 2 4 6 8 10
-2

-1

0

1

time (t /s)

v x
m

/s

Velocity (v
x
)

0 2 4 6 8 10
-4

-2

0

2

4

time (t /s)

y
/m

Position (y)

0 2 4 6 8 10
-2

-1

0

1

time (t /s)

v y
/m

/s

Velocity (v
y
)

Figure 37: Trajectories described by the robot and the ball during unobstructed interception.

Figure 38: Trajectories described by the robot and the ball in a situation where the ball collides

with an obstacle.

At the moment that the ball hits the object and its trajectory changes, the tracking algorithm is

slow to respond to the sudden change in the reference velocity, and the robot is slowed down in the

process, requiring more effort from the actuators to res

more difficult to reduce the distance to the ball (which can be seen in

under the control of IPNG, the respective acceleration command acts to preserve the norm of the

relative velocity between the robot and the ball, which implies that the distance to the ball is decreased

more efficiently. In this case, the switching instants

required time for interception is ௧௧ݐ

tracking alone. The difference between these two values is j

presented, but also by the fact that the robot must avoid the ball (by using the concepts discussed in

Section 5.4) whilst converging towards the interception trajectory, and some oscillations are caused in

the robot’s motion due to this fact (as can be seen in

: Trajectories described by the robot and the ball during unobstructed interception.

: Trajectories described by the robot and the ball in a situation where the ball collides

At the moment that the ball hits the object and its trajectory changes, the tracking algorithm is

slow to respond to the sudden change in the reference velocity, and the robot is slowed down in the

process, requiring more effort from the actuators to restore the robot’s speed, which in turn makes it

more difficult to reduce the distance to the ball (which can be seen in Figure 36

under the control of IPNG, the respective acceleration command acts to preserve the norm of the

relative velocity between the robot and the ball, which implies that the distance to the ball is decreased

the switching instants are ௌଵݐ = 1.69 s, ௌଶݐ = 3.78 s

௧௧= 6.87 s for the proposed solution and ௧௧ݐ

tracking alone. The difference between these two values is justified not only by the reasons already

presented, but also by the fact that the robot must avoid the ball (by using the concepts discussed in

converging towards the interception trajectory, and some oscillations are caused in

the robot’s motion due to this fact (as can be seen in Figure 38).

74

: Trajectories described by the robot and the ball during unobstructed interception.

: Trajectories described by the robot and the ball in a situation where the ball collides

At the moment that the ball hits the object and its trajectory changes, the tracking algorithm is

slow to respond to the sudden change in the reference velocity, and the robot is slowed down in the

tore the robot’s speed, which in turn makes it

36). In contrast, while

under the control of IPNG, the respective acceleration command acts to preserve the norm of the

relative velocity between the robot and the ball, which implies that the distance to the ball is decreased

and ௌଷݐ = 5.53 s. The

= 10.3 s for trajectory

ustified not only by the reasons already

presented, but also by the fact that the robot must avoid the ball (by using the concepts discussed in

converging towards the interception trajectory, and some oscillations are caused in

75

7.5 Object Transport

To test the object transport solution, the robot was required to move a soccer ball, which is

initially in contact with the robot’s chassis, to a reference position = [0 0]். Two experiments are

performed: stabilization in an unobstructed environment; and obstacle avoidance while dribbling.

For both experiments, the initial conditions are presented in Table 5.

Table 5: Initial conditions for the object transport experiments.

x

(m)

y

(m)

θ

(rad)

vx

(m/s)

vy

(m/s)

ω

(rad/s)

xB

(m)

yB

(m)

vBx

(m/s)

vBy

(m/s)

Initial

Value
-4 0 π 0 0 0 -4.3 0 0 0

Figure 39: Position of the ball and the robot’s geometric center during unobstructed dribbling,

as well as the distance and relative angle between the ball and the robot.

The results of the unrestricted motion experiment are shown in Figure 39 and Figure 41. It is

verified that, if nothing is preventing the ball from reaching the desired position directly, the resulting

trajectory described by the ball is approximately linear, as it was expected from the model of the ball

0 5 10 15 20
-6

-4

-2

0

2

time (t /s)

x
/m

Position (x)

0 5 10 15 20
-0.6

-0.4

-0.2

0

0.2

0.4

time (t /s)

y
/m

Position (y)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

time (t /s)

||q
R
-q

B
||

Distance to the Ball

0 5 10 15 20

-0.2

-0.1

0

0.1

0.2

time (t /s)

th
e
ta

B
/r

a
d

Relative Angle to the Ball

76

presented in Section 4.1 and the object controller described in Section 4.3.2. The robot is able to

maintain the physical restrictions of the dribbling process valid throughout the motion of the ball,

which, in this case, are such that ோ‖ − ‖ = 0.3 m and ߠ = 0 rad.

For the second experiment, the robot is faced with an obstacle formation, which possesses

sufficient space for the robot to pass through with little effort if its motion was unrestricted, but requires

significant deviation while dribbling, since the “safety distance” that must be kept from the obstacles is

effectively greater in this case (see Figure 42).

Figure 40: Position, relative distance and relative angle during transport while avoiding

obstacles.

While the robot is still able to avoid these obstacles and stabilize the ball around its goal

position, if an accentuated curvature is required by the ball (a rapidly varying required force vector), in

some situations, the ball may briefly stop during its motion. This happens due to slight collisions with

the robot while it is trying to accompany the angle of the required force vector, added to the effects of

friction while the robot is unprepared to apply forces onto the ball (see Section 4.3.3). This, in turn,

causes some noise in the direction of the force vectors required by the object controller, and since the

robot must reposition itself in order to overcome friction and to set the ball in motion again, this may

result in a situation where the robot performs a “loop” around the ball. Without possessing specialized

actuators to interact with the ball, this problem may be solved by maintain the ball at a higher speed

0 5 10 15 20 25
-6

-4

-2

0

2

time (t /s)

x
/m

Position (x)

0 5 10 15 20 25
-3

-2

-1

0

1
Position (y)

time (t /s)

y
/m

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

time (t /s)

||q
R
-q

B
||

Distance to the Ball

0 5 10 15 20 25

-0.2

-0.1

0

0.1

0.2

time (t /s)

th
e
ta

B
/r

a
d

Relative Angle to the Ball

77

during its motion, where the effects of these unexpected collisions are less noticeable, but this, in turn,

reduces the safety of the system during its motion, and the ability of the robot to manipulate the ball.

Figure 41: Trajectory described by the robot’s geometric center and the ball during an

unobstructed transport. The ball begins its motion at position and ends at .ࢌ

Figure 42: Trajectory described by the robot’s geometric center and the ball during transport

while avoiding obstacles. The obstacles are represented by the black filled circles in the

environment. Around these, a green circle is drawn that symbolizes the safety distance that the

robot must keep during unrestricted motion, and a red circle, which represents the necessary

safety distance while dribbling. The ball begins its motion at position and ends at .ࢌ

-5 -4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

3

X: -0.06371

Y: 0.03771

X /m

Y
/m

Robot

Ball

p
i

p
f

-5 -4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

X: 0.006297

Y: 0.009989

X /m

Y
/m

Robot

Ball

p
i

p
f

78

8 Conclusions and Future Work

8.1 Conclusions

The control algorithms that were presented in this work address the most common motion

control problems for holonomic robots, namely the problems of posture stabilization, posture tracking,

moving object interception and transport of moveable objects. The problem of obstacle avoidance was

also considered.

Feedback linearization techniques were used to obtain control laws that solve both the point

stabilization and point tracking problems for holonomic robots. Alongside these control laws for

position, discrete-time solutions to the orientation control of the robot were presented, allowing velocity

control for static references and torque control for references moving with constant accelerations. The

solutions obtained through this approach can be readily analyzed with respect to their performance,

and provide a highly adaptable framework, through which new tasks can be easily defined, and

changes may be made to the robot’s hardware, without requiring thorough recalibration.

It was verified that, for the posture stabilization problem, the definition of an appropriate control

law in discrete time makes the system more robust to changes in the rate of execution of the control

algorithms, and that the overall effectiveness of the solution is increased for tasks with a low execution

rate. For posture tracking, however, a finite-difference approximation of a continuous-time control law

was seen to generate better results.

A solution to the problem of moving object interception by a holonomic mobile robot was

presented, based on work previously developed for robotic manipulators. Although it was not possible

to test this solution in a real robotic platform, tests were performed in the Webots simulation

environment on models of the ISocRob robots, and this technique was shown to allow the successful

interception of a freely rolling ball, regardless of the initial conditions of the problem. This solution was

also shown to be also robust to unexpected variations in the trajectory of the object. Through the

proper selection of the closed-loop system’s poles, it was shown that, while tracking, it is possible to

avoid overshoot situations, while taking the limitations of the robot’s actuators into account. This

property was exploited to minimize the total required time for interception. For the problem of

transporting an object through the pushing action of a mobile robot, a solution based on an Interface-

Control scheme was developed, that relies on the application of a PD controller to provide the required

accelerations of the object in question, and uses these accelerations as a reference for a Hybrid

Position/Force controller acting upon the robot. This motion control technique explicitly takes into

account the physical restrictions between the object and the robot, and allows for task versatility, since

the motion of the object only depends on the controller that is used to provide its desired

accelerations. This can be exploited to include, for example, obstacle avoidance while transporting the

object. Compensation terms were added to the Hybrid Position/Force controller so as to maintain the

physical restrictions valid throughout the motion of the object. This was shown, through simulation in

the Webots environment, to allow a soccer robot to dribble a ball across the field of play, while

79

avoiding obstacles, even if the robot does not possess any actuators that facilitate dribbling, such as

the rolling drums.

An obstacle avoidance algorithm was presented, which deviates the desired control inputs of

the robot so that it passes tangent, in the configuration space, to each detected obstacle, which are

modelled as circles. The solution was tested both in the real ISocRob robots and in the Webots

environment, where it proved successful. The paths described by the robot while using this method

approach the globally shortest paths for the most common configurations of obstacles that are

encountered during a robotic soccer match. The method was extended to explicitly account for moving

obstacles, and used as an integral part of the object interception methods, where it was verified that

the robot successfully avoids a moving ball while converging towards the desired interception

trajectory. It was verified, however, that during the application of the obstacle avoidance algorithm to

situations where torque control is required, the robot may exhibit oscillations in its motion when it is

near an obstacle. This is due to the nonlinearities introduced by the robot’s actuators, which, as of this

moment, are not taken into account during obstacle avoidance.

8.2 Future Work

This work has not yet exploited the full capabilities of any actuators that the mobile robot may

have that allow interaction with moveable objects by means other than pushing those objects with the

robot’s chassis. This accounts, for example, for the rolling drums that are commonly used by soccer

robots. This was due to the fact that, at the time of writing, the rolling drums of the ISocRob robots

were not operational and no short-term measures could be taken to replace them. With such

actuators, new possibilities for transport and interception appear. Namely, it would be possible to

apply forces to the ball along the robot frame’s y-axis, by applying a certain angular acceleration to the

robot, while using the roll to pull the ball towards the robot’s chassis. This would generate an effect of

turning the ball around the robot that, while not desirable under normal conditions, could enable the

robot to escape impending collisions if the restrictions of the dribbling process could not be

maintained, due to the presence of obstacles.

Although the presented obstacle avoidance algorithm was shown to provide acceptable results,

some algorithms, such as the Dynamic Window approach, would enable a more elegant description of

the obstacle avoidance process while transporting objects. A form of implementing the concepts

introduced by this approach in a computationally cheap manner could prove effective in addressing

some of the limitations of the present algorithm, namely by explicitly considering the capabilities of the

actuators for added safety.

The proposed solutions to moving object interception and transport are well suited to dynamic

ball-pass behaviors in the robotic soccer environment. While this possibility was not yet explored, it

would entail using the Hybrid Position/Force controller to turn the dribbling robot to the receiver of the

pass, while maintaining the ball in motion (which is actually a trivial extension to the original problem),

and using the interception techniques on the receiver to capture the ball after the passing action is

executed.

80

9 Bibliography

[1] C. F. Marques and P. U. Lima, "Multi-sensor Navigation for Soccer Robots," in Proceedings of the

RoboCup 2001 Symposium, Seattle, USA, 2001.

[2] B. D. Damas, P. U. Lima, and L. M. Custódio, "A Modified Potential Fields Method for Robot

Navigation Applied to Dribbling in Robotic Soccer," Lecture Notes in Computer Science, pp. 65-

77, 2003.

[3] R. A. Brooks, "Robust Layered Control System For A Mobile Robot," IEEE Journal of Robotics

and Automation, vol. 2, no. 1, pp. 14-23, 1986.

[4] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots. MIT press, 2004.

[5] M. Barbosa, N. Ramos, and P. Lima, "Mermaid - Multiple-Robot Middleware for Intelligent

Decision-Making," in Proc. of IAV2007 - 6th IFAC Symposium on Intelligent Autonomous

Vehicles, Toulouse, France, 2007.

[6] N. H. McClamroch and D. Wang, "Feedback Stabilization and Tracking of Constrained Robots,"

IEEE Transactions on Automatic Control, vol. 33, no. 5, pp. 419-426, May 1998.

[7] C. C. de Wit and O. J. Sordalen, "Exponential stabilization of mobile robots with nonholonomic

constraints," in Proceedings of the 30th Conference on Decision and Control, Brighton, UK, 1991,

pp. 692-697.

[8] C. C. de Wit, B. Siciliano, and G. Bastin, Theory of Robot Control. Springer, 1996.

[9] P. G. Plöger, G. Indiveri, and J. Paulus, "Motion Control of Swedish Wheeled Mobile Robots in the

Presence of Actuator Saturation," in RoboCup 2006 Symposium, Proceedings, Bremen,

Germany, 2006.

[10] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 4th ed.

Pearson Education International, 2002.

[11] S.-O. Lee, Y.-J. Cho, M. Hwang-Bo, B.-J. You, and S.-R. Oh, "A Stable Target-Tracking Control

for Unicycle Mobile Robots," in Proceedings of the 2000 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2000.

[12] S. Kawarai, "A Direct Method for Exact Discretization of Ordinary Differential Equations," in

Proceedings of the 47th IEEE International Midwest Symposium on Circuits and Systems,

Hiroshima, Japan, 2004, pp. 89-92.

[13] M. Mehrandezh, M. N. Sela, R. G. Fenton, and B. Benhabib, "Robotic interception of moving

objects using ideal proportional navigation guidance technique," Robotics and Autonomous

Systems, vol. 28, pp. 295-310, 1999.

[14] R. Sharma, J.-Y. Hervé, and P. Cucka, "Dynamic Robot Manipulation Using Visual Tracking," in

Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice,

France, 1992.

[15] Z. Lin, V. Zeman, and R. V. Patel, "On-Line Robot Trajectory Planning for Catching a Moving

81

Object," in Proceedings of the 1989 IEEE International Conference on Robotics and Automation,

Scottsdale, AZ, USA, 1989, pp. 1726-1731.

[16] E. A. Croft, R. G. Fenton, and B. Benhabib, "Optimal Rendezvous-Point Selection for Robotic

Interception of Moving Objects," IEEE Transactions on Systems, Man, and Cybernetics, vol. 28,

no. 2, pp. 192-204, Apr. 1998.

[17] D. Fernandes, "Arquitecturas de Seguimento Visual e Captura por um Manipulador Robótico de

Objectos em Movimento," MsC Thesis, Instituto Superior Técnico, Lisbon, 1997.

[18] J. A. Borgstadt and N. J. Ferrier, "Interception of a Projectile Using a Human Vision-Based

Strategy," in Proceedings of the 2000 IEEE International Conference on Robotics & Automation,

San Francisco, CA, USA, 2000, pp. 3189-3196.

[19] I. R. Manchester, E. M. P. Low, and A. V. Savkin, "Vision-Based Interception of a Moving Target

by a Mobile Robot," in 16th IEEE International Conference on Control Applications, Singapore,

2007, pp. 397-402.

[20] F. P. Adler, "Missile Guidance by Three-Dimensional Proportional Navigation," Journal of Applied

Physics, vol. 27, no. 5, pp. 500-507, May 1956.

[21] V. Rajasekhar and A. G. Sreenatha, "Fuzzy Logic Implementation of Proportional Navigation

Guidance," Acta Astronautica, vol. 46, no. 1, pp. 17-24, 2000.

[22] P.-J. Yuan, "Optimal Guidance of Proportional Navigation," IEEE Transactions on Aerospace and

Electronic Systems, vol. 33, no. 3, pp. 1007-1012, Jul. 1997.

[23] P. Stone and M. Veloso, " A layered approach to learning client behaviors in the robocup soccer

server," Applied Artificial Intelligence, vol. 12, pp. 165-188, 1998.

[24] H. Müller, et al., "Making a Robot Learn to Play Soccer Using Reward and Punishment," Lecture

Notes in Computer Science, vol. 4667/2007, pp. 220-234, 2007.

[25] T. Gabel and M. Riedmiller, "Learning a Partial Behavior for a Competitive Robotic Soccer Agent,"

KI- Künstliche Intelligenz, vol. 20, no. 2, pp. 18-23, May 2006.

[26] R. Sargent, B. Bailey, C. Witty, and A. Wright, "Dynamic Object Capture Using Fast Vision

Tracking," AI Magazine, vol. 18, no. 1, pp. 65-72, 1997.

[27] F. Stolzenburg, O. Obst, and J. Murray, "Qualitative Velocity and Ball Interception," in KI 2002:

Advances in Artificial Intelligence, Twentyfifth Annual German Conference, Aachen, Germany,

2002, p. 283–298.

[28] J. M. Borg, M. Mehrandezh, R. G. Fenton, and B. Benhabib, "An Ideal Proportional Navigation

Guidance System for Moving Object Interception - Robotic Experiments," in IEEE International

Conference on Systems, Man, and Cybernetics, 2000, pp. 3247-3252.

[29] M. Mehrandezh, N. M. Sela, R. G. Fenton, and B. Benhabib, "Robotic interception of moving

objects using an augmented ideal proportional navigation guidance technique," IEEE

Transactions on Systems, Man and Cybernetics, Part A, vol. 30, no. 3, pp. 238-250, May 2000.

[30] U. S. Shukla and P. R. Mahapatra, "The proportional navigation dilemma-pure or true?," IEEE

82

Transactions on Aerospace and Electronic Systems, vol. 26, no. 2, pp. 382-392, Mar. 1990.

[31] P.-J. Yuan and J.-S. Chern, "Ideal proportional navigation," NASA STI/Recon Technical Report A,

vol. 95, pp. 501-512, 1993.

[32] C.-D. Yang and C.-C. Yang, "A unified approach to proportional navigation," IEEE Transactions

on Aerospace and Electronic Systems, vol. 33, no. 2, pp. 557-567, Apr. 1997.

[33] X. Li, M. Wang, and A. Zell, "Dribbling Control of Omnidirectional Soccer Robots," in Proc. of the

2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 2007, pp. 2623-

2628.

[34] M. Riedmiller and A. Merke, "Using Machine Learning Techniques in Complex Multi-Agent

Domains," in Adaptivity and Learning. Springer, 2003.

[35] Y. Nakamura, K. Nagai, and T. Yoshikawa, "Mechanics of coordinative manipulation by multiple

robotic mechanisms," in Proceedings of the 1987 IEEE International Conference on Robotics and

Automation, 1987, pp. 991-998.

[36] W. C. Dickson and R. H. ,. J. Cannon, " Experimental results of two free-flying robots capturing

and manipulating a free-flying object," in Proceedings of the 1995 IEEE/RSJ International

Conference on Intelligent Robots and Systems. 'Human Robot Interaction and Cooperative

Robots' , Pittsburgh, PA, USA, 1995, pp. 51-58.

[37] T. Yoshikawa, "Dynamic hybrid position/force control of robot manipulators--Description of hand

constraints and calculation of joint driving force," IEEE Journal of Robotics and Automation, vol. 3,

no. 5, pp. 386-392, Oct. 1987.

[38] T. Yoshikawa, T. Sugie, and M. Tanaka, "Dynamic Hybrid Position/Force Control of Robot

Manipulators-Controller Design and Experiment," in Proceedings of the 1987 IEEE International

Conference on Robotics and Automation, 1987, pp. 2005-2010.

[39] V. J. Lumelsky and A. A. Stepanov, "Path-planning strategies for a point mobile automaton

moving amidst unknown obstacles of arbitrary shape," in Autonomous robot vehicles, I. J. Cox

and G. T. Wilfong, Eds. New York, NY, USA: Springer-Verlag New York, Inc., 1990, pp. 363-390.

[40] I. Kamon, E. Rivlin, and E. Rimon, "A new range-sensor based globally convergent navigation

algorithm for mobile robots," in Proceedings of the 1996 IEEE International Conference on

Robotics and Automation, Minneapolis, Minnesota, USA, 1996, pp. 429-435.

[41] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," International

Journal of Robotics Research, vol. 5, no. 1, pp. 90-98, 1986.

[42] L. Chengqing, M. H. ,. J. Ang, H. Krishnan, and L. S. Yong, "Virtual Obstacle Concept for Local-

minimum-recovery in Potential-field Based Navigation," in Proc. of the 2000 IEEE International

Conference on Robotics and Automation, ICRA apos;00., San Francisco, CA, USA, 2000, pp.

983-988.

[43] X. Yun and K.-C. Tan, "A Wall-Following Method for Escaping Local Minima in Potential Field

Based Motion Planning," in Proceedings of the 8th International Conference on Advanced

Robotics. ICAR apos;97. , Monterey, CA, USA, 1997, pp. 421-426.

83

[44] J. Borenstein and Y. Koren, "Real-time Obstacle Avoidance for Fast Mobile Robots," IEEE

Transactions on Systems, Man, and Cybernetics, vol. 19, no. 5, pp. 1179-1187, 1989.

[45] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile

robots," IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, Jun. 1991.

[46] J. Minguez and L. Montano, "Nearness diagram navigation (ND): a new real time collision

avoidance approach," in Proceedings of the 2000 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2000). , Takamatsu, Japan, 2000, pp. 2094-2100.

[47] D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to collision avoidance,"

Robotics & Automation Magazine, IEEE, vol. 4, no. 1, pp. 23-33, Mar. 1997.

[48] R. Simmons, "The curvature-velocity method for local obstacle avoidance," in Proceedings of the

1996 IEEE International Conference on Robotics and Automation , Minneapolis, Minnesota, USA,

1996, pp. 3375-3382.

[49] O. Brock and O. Khatib, "High-speed navigation using the global dynamic window approach," in

Proc. of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, USA,

1999, pp. 341-346.

[50] W. Feiten, R. Bauer, and G. Lawitzky, "Robust obstacle avoidance in unknown and cramped

environments," in Proc. of the 1994 IEEE International Conference on Robotics and Automation.,

San Diego, CA, USA, 1994, pp. 2412-2417.

[51] Y. H. Liu and S. Arimoto, "Path planning using a tangent graph for mobile robots among polygonal

and curved obstacles," International Journal of Robotic Research, vol. 11, no. 4, pp. 376-382,

Aug. 1992.

[52] M. Bowling and M. Veloso, "Motion control in dynamic multi-robot environments," in Proceedings

of the 1999 IEEE International Symposium on Computational Intelligence in Robotics and

Automation, Monterey, CA, USA, 1999, pp. 168-173.

[53] J. Messias, J. Santos, J. Antunes, and P. Lima, "Monte Carlo Localization Based on Gyrodometry

and Line-Detection," in Proc. of ROBÓTICA2008 - 8th Conference on Mobile Robots and

Competitions, Aveiro, Portugal, 2008.

[54] J. C. Alexander and J. H. Maddocks, "On the Kinematics of Wheeled Mobile Robots," in

Autonomous robot vehicles, I. J. Cox and G. T. Wilfong, Eds. New York, NY, USA: Springer-

Verlag New York, Inc. , 1990, pp. 5-24.

A1. Kinematic and Dynamic Properties of an
Omnidirectional Mobile Robot

In this section, a brief review is made to the fundamental concepts used throughout the

remainder of the work. A basic omnidirectional robot

dynamics, and its most relevant

these concepts, the reader is referred to

Figure 43: Representation of the world frame and the robot frame.

Let the posture of a mobile robot be defined as

frame, known as the world frame

orientation of the mobile robot is defined as the angular

frame relative to the robot’s chassis, known as the

In these conditions, suppose that the robot has a certain

frame is ࢜ = ௫ݒ] ,்[௬ݒ and a certain angular velocity

the world frame from its velocities in the robot frame, a rotation matrix is applied, of the following form:

It then follows that:

atic and Dynamic Properties of an
Omnidirectional Mobile Robot

In this section, a brief review is made to the fundamental concepts used throughout the

A basic omnidirectional robot is modelled with respect to its kinema

control properties are presented. For a more thorough description of

these concepts, the reader is referred to [8],[4],[54].

Representation of the world frame and the robot frame.

of a mobile robot be defined as its position and orientation

orld frame i.e. = ்] ்[ߠ = ݔ] ݕ ்[ߠ , as depicted in

orientation of the mobile robot is defined as the angular difference between the wor

frame relative to the robot’s chassis, known as the robot frame.

suppose that the robot has a certain linear velocity, which

, and a certain angular velocity ߱ . To obtain the displacement

the world frame from its velocities in the robot frame, a rotation matrix is applied, of the following form:

(ߠ)ܴ =
cos ߠ −sin ߠ 0
sin ߠ cos ߠ 0

0 0 1
൩

̇ = ቈ(ߠ)ܴ
௫ݒ
௬ݒ
߱

84

atic and Dynamic Properties of an

In this section, a brief review is made to the fundamental concepts used throughout the

is modelled with respect to its kinematics and

control properties are presented. For a more thorough description of

Representation of the world frame and the robot frame.

and orientation ߠ in an inertial

, as depicted in Figure 43. The

difference between the world frame and a

velocity, which in the robot

. To obtain the displacement ̇ of the robot in

the world frame from its velocities in the robot frame, a rotation matrix is applied, of the following form:

(A9.1)

(A9.2)

85

Equation (A9.2) is known as the posture kinematic model of the omnidirectional robot. This

model has two significant properties: the rotation matrix is(ߠ)ܴ nonsingular for all values of ,ߠ which

simply means that any desired displacement in the world frame can be achieved by the

omnidirectional robot (if it is within the capabilities of its actuators); also, (ߠ)ܴ is block-diagonal, which

implies that the posture kinematic model can be decoupled into its position and orientation

components:

̇ = ࢜(ߠ)ܤ

ߠ̇ = ߱
(A9.3)

where (ߠ)ܤ is defined as:

(ߠ)ܤ = ቂ
cos ߠ −sin ߠ
sin ߠ cos ߠ

ቃ (A9.4)

The ability to consider independent controls for position and orientation simplifies some of the

motion control problems of omnidirectional robots, as seen in Chapter 3.

For some applications, it is advantageous to provide the robot’s controls in the form of linear

and angular accelerations rather than velocities. This type of “torque control” can be achieved by

extending the posture kinematic model:

̇ = ቈ(ߠ)ܴ
௫ݒ
௬ݒ
߱

௫ݒ̇
௬ݒ̇
߱̇

൩= ቈ
௫ܽ

௬ܽ

ߙ

(A9.5)

This model is known as the posture dynamic model of the omnidirectional robot. It is evident

that, as before, it is possible to specify separate linear and angular acceleration control laws.

It is now necessary to determine the angular velocities and accelerations of the robot’s

actuators as a function of the applied controls. Consider the layout of an omnidirectional robot

equipped with three Swedish wheels, as depicted in Figure 44. Suppose that the rollers attached to

the Swedish wheels rotate around axes which are orthogonal to the axis of rotation of the main wheel

(see Chapter 6). Then, assuming that no slippage occurs, each wheel has the following contribution to

the motion of the mobile robot.

ݎ߮ ̇= [− sinߛ cosߛ ቈ[ܮ
௫ݒ
௬ݒ
߱
 ,݅= 1,2,3 (A9.6)

where ߮̇ is the angular velocity of wheel

the robot frame, ܮ is the distance between the geometric center of the robot and each wheel, and

the wheel radius.

Figure 44: Basic layout of a three

Combining the contributions of each individual wheel, it

Identically, the relation between the accelerations of the robot’s chassis and the angular

accelerations of each wheel can be obtained by differentiating

This relation is useful to identify

torque form) exceed the capabilities of the robot’s actuator

is the angular velocity of wheel ,݅ ߛ is the angle between its axis of rotation and the

is the distance between the geometric center of the robot and each wheel, and

: Basic layout of a three-wheeled omnidirectional robot.

Combining the contributions of each individual wheel, it results that:

ݎ

߮̇ଵ
߮̇ଶ
߮̇ଷ

൩=

⎣
⎢
⎢
⎢
⎡

0 −1 ܮ

−
√3

2

1

2
ܮ

√3

2

1

2
⎦ܮ
⎥
⎥
⎥
⎤

ቈ
௫ݒ
௬ݒ
߱
= ቈܬ

௫ݒ
௬ݒ
߱

Identically, the relation between the accelerations of the robot’s chassis and the angular

accelerations of each wheel can be obtained by differentiating (A9.7):

ݎ

߮̈ଵ
߮̈ଶ
߮̈ଷ

൩= ቈܬ
௫ܽ

௬ܽ

ߙ

This relation is useful to identify situations where the desired controls (either in velocity or

torque form) exceed the capabilities of the robot’s actuators.

86

axis of rotation and the x-axis of

is the distance between the geometric center of the robot and each wheel, and ݎ is

wheeled omnidirectional robot.

(A9.7)

Identically, the relation between the accelerations of the robot’s chassis and the angular

(A9.8)

situations where the desired controls (either in velocity or

