Behaviour Coordination for
Cooperative Multi-Robot Systems

Bob van der Vecht
vdvecht@ai.rug.nl
1154249

July 2004

Supervisors:
Prof. Dr. Lambert Schomaker
University of Groningen, Groningen, The Netherlands

Prof. Dr. Pedro Lima
Instituto Superior Técnico, Lisbon, Portugal

Artificial Intelligence
University of Groningen

Abstract

This report introduces a general formulation of relational behaviours for coopera-
tive real robots and an example of its implementation using the pass between soccer
robots of the Middle-Sized League of RoboCup. The framework supports explicit
teamwork between two team mates. This implies that both participants know from
each other that they are committed to the relational behaviour and that they will
not quit without informing the other team members first. The formulation is based
on the Joint-Commitment Theory by Cohen and Levesque [2]. The implementation
of the pass concerns furthermore the development of two primitive behaviours, the
intercept and aimAndPass behaviour, and the introduction of heuristics to support
coordinated execution. This implementation is supported by past work on soccer
robots navigation. Results of experiments with real robots under controlled situ-
ations (i.e., not during a game) are presented to illustrate the described concepts.
The framework provides an easy way for implementing relational behaviours and
takes care of synchronized execution.

Acknowledgement

A short word of thanks for those who have been helping me during this graduation
research.

The main part of this project has been done at the Institute for Systems and
Robotics, of the Instituto Superior T'écnico in Lisbon Portugal. I would like to thank
my supervisor overthere, prof. dr. Pedro Lima, for all his advice and efforts. It is
too much to mention all members of the SocRob-group personally, so I thank you
all in general for the cooperation in both professional and friendly way.

Then, from the Department of Artificial Intelligence of the University of Gronin-
gen, I got good advice and guidance from prof. dr. Lambert Schomaker, my internal
supervisor. I also want to thank dr. Rineke Verbrugge for revising this report. And
I should mention the other students in room 155 and the ping-pong table overthere.

Of course I have family and friends who are absolutely valuable at all moments.

Addresses:

Institute for Systems and Robotics,
Instituto Superior Técnico

Av. Rovisco Pais 1

1049-001 Lisbon, Portugal
http://www.isr.ist.utl.pt/

Department of Artificial Intelligence,
University of Groningen

Grote Kruisstraat 2/1

9712 TS Groningen, The Netherlands
http://www.rug.nl/ai/

Contents

1 Introduction

2 Problem Description

2.1
2.2
2.3
24
2.5

Motivation for this Project
Problem Specification 0 0oL
Project Environment: RoboCup
Research Question oL
Why This Topic Has Scientific Significance

3 Theoretical Background

3.1
3.2
3.3
3.4

Related Research oL
Decision Making L
Communication L
Joint-Commitment Theory

4 The Framework

4.1

4.2
4.3

Commitment Definition
4.1.1 Commitment Phases
4.1.2 Commitment States
Synchronization
Conclusion e

5 Implementation

5.1
5.2
9.3
5.4
5.5
5.6

Implementation Platform
Implementation of the Framework
Synchronization Variables
Imperfect Communication
The Relational Behaviour Loop
Primitive Behaviour Implementation

6 Commitment Examples

6.1
6.2

6.3

When to use the Framework?
Example: The pass behaviour
6.2.1 The Simple Pass Commitment
6.2.2 Example: The Integrated Pass Commitment
Example: The FirstHome Game

BN B er RN e I GG |

©

10
10
11

13
13
14
14
15
15

17
17
18
19
20
21
22

7 Individual Pass Behaviours and Heuristics

7.1 Introduction L
7.2 AimAndPass
7.3 The Intercept behaviour
7.3.1 Visual Servoing
7.3.2 The Intercept Controller
7.3.3 Ball-Velocity Estimation
7.4 The pass heuristics oL

8 Experimental Results

8.1 The Joint Commitments
8.2 AimAndPass
8.3 Intercept L

9 Discussion

9.1 The Relational behaviour Framework
9.1.1 Flexibility of the Framework
9.1.2 Possible Points of Improvement

9.2 The Pass Behaviour
9.2.1 AimAndPass
9.2.2 Imtercept

10 What have we learned from this research?

29
29
29
30
30
31
33
34

36
36
37
38

41
41
41
42
43
43
44

46

Chapter 1

Introduction

This report presents research done for a master degree in Artificial Intelligence.
Research areas of Autonomous Systems and Multi-Agent Systems are combined in
this project. The aim of this project is to create cooperative behaviours among team
mates and it involves an implementation in a team of real robots of a RoboCup
Middle-Sized League soccer team. Showing cooperation among robots in a team
is probably one the top goals of RoboCup related research. Furthermore, it is
desirable to formulate cooperative behaviours within a formal framework extensible
to applications other than robotic soccer. Surprisingly, not many references to work
on these two topics can be found in the RoboCup-related literature or in other
publications referring cooperation among real robots.

In this report a general formulation of relational behaviours for cooperative real
robots is introduced. Most of the report describes an example of implementation of
this formulation using the pass between soccer robots of the Middle-Sized League
(MSL) of RoboCup. The formulation is based on the Joint-Commitment Theory
[2], and the pass implementation is supported by past work of the ISocRob team on
soccer robots navigation [6].

In chapter 2 the aim of this research is introduced and motivated. Chapters 3
until 5 show the construction of the framework for relational behaviours. Examples
of the use of the framework will be given in chapter 6 and the explanation of the
pass example is given chapter 7. Results and a discussion of the project are to be
found in chapters 8 and 9. A brief description of the research presented here can be
found in [19].

Chapter 2

Problem Description

2.1 Motivation for this Project

An important capability of humans and animals is to work together in order to
achieve certain goals. Different kinds of cooperation can be distinguished. One can
find instinctive cooperation for example in colony behaviours, where animals exe-
cute different tasks separately, and the result clearly looks like teamwork. Another
example can be seen as planned cooperation, like people who agree on helping each
other with an action. In the first example, participants do not need to have the
notion of a common goal, whereas in the latter they do. Géardenfors argues that in
the example of planned cooperation the participants need to have a common repre-
sentation of the goal in their internal world model [8]. In order to coordinate the
inner world models of the individuals, symbolic communication is required. In that
case participants can explicitly agree on what to do.

Imagine two people who need to move a heavy couch. They need each other to
do so. They need to lift the couch at the same moment, so they should communicate
about when to start. Then when they are carrying the couch they will know from
each other that the other does not stop unexpectedly. The task requires a highly
coordinated execution. At certain moments it is essential that the participants are
at the same level of execution.

The project described here addresses this kind of planned cooperation. The term
used in this report for planned cooperative behaviours is relational behaviours. This
term is introduced by Collinot and Drogoul, [3] and [7], in their Cassiopeia method-
ology, designed for multi-agent organizations. In other literature it is often referred
to as cooperative behaviours or teamwork.

Definition: A relational behaviour contains a set of individual behaviours, that
are to be executed coordinated by a set of agents from a cooperative team. The
participants pursue a joint goal and communicate with each other to achieve the
required coordination. This implies an agreement between the participants, referred
to as a commitment.

Much research on agent cooperation has been done in simulated environments. In

this project we have explicitly chosen for a real robot implementation, in order to
test theories about cooperation and to get more understanding in the possibilities
for cooperation in embodied agents.

2.2 Problem Specification

The aim of this project is to create relational behaviours between two autonomous
agents in the RoboCup Middle Sized League (MSL) environment. The agents will
on forehand agree with executing the behaviour. To achieve this a framework for
relational behaviours is to be created. The framework will be constructed around
the behaviour of giving a pass between two soccer robots. The framework should
not be restricted to the pass, it should provide an easy way of developing and testing
other relational behaviours as well.

The relational pass behaviour in soccer is a dynamic behaviour, which involves
two agents, and has to be executed with a high precision of timing. Because of
these properties, coordinating the behaviours of embodied agents is one of the key
issues in this research. The question may arise why a (for human beings) reactive
behaviour of giving a pass is being implemented in the framework for explicitly
planned cooperation, as the above mentioned example of moving a heavy couch.
The first answer is that giving a pass for robots is not as automatically as reactive
as it is for humans. Furthermore, the pass behaviour is a non-innate routine that
has to be learned explicitly by the agents. These learned forms of cooperation will
allow the players to work towards specific game situations, from which a cooperative
behaviour is a useful continuation. This feature can be used in further strategic team
play.

When the pass behaviour is started, the two participants have their own role.
One of the agents has the ball, he is referred to as the kicker. He will try to kick the
ball in the direction of the second agent, the receiver. The receiver tries to intercept
the ball. In order to accomplish a pass successfully, two components should be
working well. The participants have to execute their individual behaviours, and this
has to be done synchronized with the each other’s behaviour. So the first component
is the cooperation and communication between both players. This should be taken
care of by the framework for relational behaviours, mentioned above. The second
part of a successful pass concerns the individual skills of the players. The kicker
should pass the ball in the desired direction, and the receiver needs to intercept and
control the ball.

This research deals with both components. First the cooperation aspect will be
explained in a general way for relational behaviours between two agents, chapters 3
until 5. Second the development of individual behaviours specific for the pass will
be explained in chapters 6 and 7.

2.3 Project Environment: RoboCup

This project has been done at the Socrob research group at the Institute for Systems
and Robotics, at the Instituto Superior Técnico in Lisbon. The Socrob group par-

ticipates in the RoboCup Middle Sized League (MSL) with the robot soccer team
ISocRob. RoboCup, introduced by Kitano [11], is an international research project,
in which theories of several research areas are developed and implemented on a
platform of robotic soccer. The research is done at different levels, varying from a
simulation league, to humanoid robots. The aim of the project is to beat the human
world champion of soccer with a fully autonomous humanoid robotic team by the
year 2050.

RoboCup provides a dynamic, real world environment for doing scientific re-
search. At the same time the environment contains a restricted number of objects
and variables, which makes it possible to test theories more easily than in the nor-
mal world. In the MSL league of RoboCup two teams of fully autonomous robots
play soccer on a soccer field. At the moment of this research, the field was 9 by
4.5 meters, and the ISocRob team had four Nomadic Super Scout robots. Current
rules and regulations of the RoboCup MSL are described in [4]. In the RoboCup
MSL soccer world, the only existing objects are a green field with white lines, one
yellow and one blue goal and four corner posts. Furthermore there is one orange
ball, and the robotic agents of the two teams, which make the world dynamic and
non-deterministic. The agents have to play soccer fully autonomously. All infor-
mation must be collected using the robot’s own sensors or by communicating with
each other. Research within RoboCup addresses for example image processing, self-
localization, decision-making, planning, and multi agent cooperation.

2.4 Research Question

The aim of this research is make two robots in the RoboCup Middle Sized League
successfully execute a pass. This specific condition is an example of the more general
problem, where two agents with a common goal turn to cooperation to achieve it.
This research focuses primarily on a general framework for relational behaviours
between two agents, and secondly on the individual behaviours for a pass, and the
execution of it. The research questions to be answered are:

e How can we develop a general framework for teamwork by two robots, such
that it allows an easy way of defining and implementing new coordinated
behaviours?

e How can we define the logical conditions for a dynamic pass between two
robots? How accurately and efficiently can two robots execute a pass during
a RoboCup Middle-Sized League soccer game?

2.5 Why This Topic Has Scientific Significance

The RoboCup project is an interesting research area for Artificial Intelligence. It
offers the opportunity to combine many different disciplines of Al, in a dynamic,
real time environment. Theories that are developed and implemented are not only
restricted to robotic soccer, but have application opportunities in many robotic
environments. The subject of relational behaviours will appear in all areas where

cooperation between robots is involved, one can think of space expeditions or rescue
operations.

For humans and animals, cooperation shows to be a strong ability for achieving
goals. Examples are the above-mentioned case of two people moving a heavy couch,
or lions who work together as a team in order to catch their prey, [17]. In this research
it is attempted to let robots use these forms of explicit planned cooperation, in order
to execute behaviours as a team, not only as individual. Transforming cognitive
capacities of living creatures to systems of embodied agents has always been one of
the goals of artificial intelligence research.

Much research to cooperative behaviours has been done in simulated environ-
ments. This project is especially engaged in implementing theory in the real world.
We will have to deal with real world problems like noise in sensor information. The
project will give us more understanding about the aspects of synchronized behaviour
execution and timing in a team of robots. Even theoretically simple issues can be
difficult in a real world environment.

Within the RoboCup environment, this project tries to take a new step in team
strategies and cooperative play. Each year the RoboCup rules are adapted and
changed towards new challenges. In this view, cooperative behaviours, like passes,
will be more important in the future, and this research tries to give understanding
about how precisely a simple pass can be executed at this moment. Bottlenecks will
arise, which can direct further research for the future.

Chapter 3

Theoretical Background

3.1 Related Research

At stated in the introduction, this project focuses on planned cooperation. Par-
ticipants start the execution of a relational behaviour after they have created a
common representation of the goal. Other researchers have tried to create relational
behaviours and cooperation in multi-agent systems. Roughly the researches can be
divided in two groups; behaviour based approaches and logical approaches.

Behaviour based research of teamwork often involves simulated environments, for
example the RoboCup simulation environment. Examples of those researches are
from Matsubara [13] and Pagello [14]. The first trained a neural network in order
to learn the agent choose between a goal shot and a pass. Feedback from a trainer
is used for learning. No information is given about a relational commitment or
about the communication. Pagello in his research tried to extend behaviour based
approaches for individual robot control, to emergent cooperative behaviours of a
team. Observing the behaviour of other agents is seen as a non-intentional kind
of communication, referred to as implicit communication. By identifying actions of
other agents, and inserting them into an evaluation function of a world situation,
decisions about cooperation are made. There is no form of commitment between
players. Since there is no guarantee for inner world model coordination between the
agents, the relational behaviour may be kept by one of the team mates even if the
other has to withdraw its relational behaviour. The same is the case in Yokota et al.,
[20]. They use explicit communication to achieve cooperation and synchronization
in real robots, but again no commitments are set up.

Within logic-based architectures for decision making it has been tried as well to
achieve cooperation between team members. An example of a tool that enables the
development of applications based on the Joint-Commitment Theory [2] has been
thoroughly reported by Tambe in [18]. They have developed the STEAM frame-
work, which provides a method for creating cooperation in a team of autonomous
agents. STEAM can handle various team sizes and is strong in failure recovery and
the implementation includes communication protocols for the Joint-Commitment
Theory. It has been tested in simulated environments for military operations and
robotic soccer.

Another framework is presented in recent work of Kaminka [10]. The BITE
architecture provides services for automated coordination and collaboration. A flex-
ible framework has been created which supports different protocols for coordination,
communication and control. Their implementation involves formation control in real
robots.

The research described here, is related to some of the above mentioned subjects.
A logical approach is used to create a framework for planned cooperation and the
implementation involves embodied agents.

3.2 Decision Making

In order to create a framework for relational behaviours, it is necessary to take a
closer look to decision making within a robotic team of agents. Where can such
a framework be constructed in a complete decision model? During a game of the
RoboCup MSL, all robots have to gather their own world information using there
own sensors, or by communicating with team mates. With their knowledge about
the world, the robots should decide individually what to do at each point in time.
At the same time they should be aware of the fact that they are playing in a team,
and thus have the possibility to work together to achieve common goals.

An architecture for behaviour coordination and decision making for a team of
agents is proposed by Collinot in [3] and applied to a robotic soccer team by Drogoul,
[7]. It considers three types of behaviours: organizational, relational and individual.

e Organizational behaviours: those concern decisions involving the whole
team, e.g., in robotic soccer, player role selection such as defender or attacker.

e Relational behaviours concern more than one player. Commitments among
team mates are established here.

e Individual behaviours: at this level, primitive behaviours are selected, and
motor commands are used to influence the environment in the desired way.

Depending on the role selection at the organizational layer, possible relational be-
haviours will be enabled or disabled. At his turn, a relational behaviour can enable
or disable individual behaviours. A framework as is to be constructed in this project
should be implemented in the relational layer of this decision architecture, and it
should interact with the individual level.

3.3 Communication

In a relational behaviour the agents should act synchronously, and therefore com-
munication is necessary. Summarizing the works described in paragraph 3.1, we
can distinguish two ways of communication that are used to achieve cooperation;
implicit and explicit communication.

Using implicit communication, no information will be directly sent, but the
agents have to use their own observations to detect and identify the other’s be-
haviour. This implies the more reactive approach of the two cooperation ways.

10

There is no guarantee for similarity of the common goal representation of the par-
ticipants. A second agent does not necessarily need to know that the first agent
has started the relational behaviour. For example in the situation of giving a pass
in soccer the kicker can start to pass without the receiver expecting the pass. In
the same way, the agents, use their own sensor information for determining the
progress of a relational behaviour. This makes synchronization of the individual be-
haviours harder. Successful implementations of relational behaviours using implicit
communication are mostly found in simulated environments.

With explicit communication there will be direct communication between the
two agents. Explicit messages will be sent. At a certain point they agree to start
the relational behaviour, and they will tell each other their progress. The same way
they will tell each other when the behaviour has been ended. This facilitates the
coordination of the inner world models of the participants, which is a requirement
for successful planned cooperation.

Discussing different possibilities for communication we come to the conclusion
of using explicit communication. With this form of communicating the robots have
more certainty about the status of the other within a commitment, than when they
use implicit communication. In a simulator environment it is possible to communi-
cate implicitly, but in our real world implementation we foresee too much uncertainty
to deal with. Our aim, to create planned cooperation for which we need a common
representation of the goal and mutual knowledge about the progress of a task, im-
plies that explicit communication is most useful. This choice is supported by the
observation that the team coordination has to be kept as high as possible. The
agents need to be sure what the other is doing. A Multi Agent theory that can be
used for relational behaviours and at the same time supports our aim of certainty
is the Joint-Commitment Theory of Cohen and Levesque [2]. This theory has been
implemented in previous work by Tambe [18].

3.4 Joint-Commitment Theory

Cohen and Levesque make a clear distinction between coordination in multi agent
systems and teamwork. While common traffic is clearly a coordinated system, it
is not teamwork. Driving in a convoy however, is seen as teamwork, because the
involved agents share a common goal and need to cooperate in order to achieve their
goal.

The Joint-Commitment Theory is based on the idea that agents with a common
goal join in a commitment. They inform each other about the progress to achieve
the goal. To formalize the theory, the following definitions are given in [2]:

Definition: Persistent Goal (PG)
An agent has a persistent goal relative to ¢ to achieve p if the following three rules
hold:

e The agent believes that p is currently false.
e The agent wants p to be true eventually.

11

e it is true (and the agent knows it) that (2) will continue to hold until he comes
to believe either that p is true, or that it will never be true, or that ¢ is false.

Definition: Weak Achievement Goal (WAG)
An agent has a weak achievement goal relative to ¢ and with respect to a team to
bring about p if either of these conditions holds:

o The agent has a normal persistent goal to achieve p.

e The agent believes that p is true, will never be true, or is irrelevant (that is,
q is false), but has as a goal that the status of p will be mutually believed by
all the team members.

Definition: Joint Persistent Goal (Joint Commitment)
A team of agents have a joint persistent goal relative to ¢ to achieve p just in case:

e they mutually believe that p is currently false;

e they mutually know they all want p to eventually be true;

e it is true (and mutual knowledge) that until they come to mutually believe
either that p is true, that p will never be true, or that ¢ is false, they will
continue to mutually believe that they each have p as a weak achievement
goal relative to ¢ and with respect to the team.

A joint goal can consist of a set of subgoals or it can imply a sequence of actions
for the participants. According to the theory, when the team jointly intend to
achieve a goal in a commitment, the agents in any of the steps will jointly intend
to do the step relative to a larger intention. From this feature, it can be concluded
that a commitment can contain several parts, which will be executed stepwise.

Summarized and applied to relational behaviours within a robotic environment
the following can be said. Predefined logical conditions can establish a commitment
between two agents. Once a robot is committed to a relational behaviour, he will
pursue this task until one or more conditions become false, or until the goal has
been accomplished. Any success or failure has to be reported to all participants in
the commitment, before the agent quits the commitment.

In the work described here, the relational behaviour that is to be executed, is
known to all participants. If predefined conditions are true, the participants have as
a joint goal to finish the relational behaviour successfully. They know the sequence of
actions to take, or the subgoals that are to be achieved. The initiative for a relational
behaviour is taken by one of the agents. If predefined conditions are valid, he does a
request for the relational behaviour. A potential partner checks if the conditions to
accept are valid. If so, the commitment is established. During the execution of the
commitment the changing environment can lead to failure or success at any time.
In that case the commitment will be ended.

In order to make the use of the Joint-Commitment Theory more clear, examples
will be given later on. First the framework around the theory will be explained then
it will be applied to the relational behaviour of giving a pass.

12

Chapter 4

The Framework

4.1 Commitment Definition

The theoretical base of a relational behaviour has been defined now. A commitment
will be set up following predefined conditions. The agents should communicate their
behaviour progress to each other. To make an implementation possible, we must
clearly define a commitment. The communication also has not been defined yet. In
this part of the report it will be explained how a commitment is to be defined and
implemented exactly.

The tasks for an individual agent within a relational behaviour can be seen as
a state machine. For a simple example of a relational pass behaviour the state
machines for both participants are shown in picture 4.1.

Pass Commitment

Kicker Receiver

SUCCESS SUCCESS
Y
@ Synchronization FAILURE

FAILURE
SUCCESS/
FAILURE

»

SUCCESS/

Figure 4.1: Simple example of the pass commitment, shown in a finite-state machine

13

4.1.1 Commitment Phases

As explained before, the decision model of an agent selects first a relational behaviour
and knowing this decision, it selects the individual primitive behaviour. This prim-
itive behaviour handles the interaction with the world. During the execution of a
relational behaviour, the decision model will select a primitive behaviour concerning
the commitment. But during setting up and ending a commitment, a robot that is
not committed to the relational behaviour model should not choose the primitive
behaviour belonging to the relational behaviour.

In general, within a commitment three phases can be distinguished: Setup, Loop
and Fnd. In the Setup and FEnd phase, the decision model will not select the re-
lational behaviour, so it will be ignored during the primitive behaviour selection.
Only in the Loop phase participants will select primitive behaviours concerning the
commitment in order to achieve their joint goal. In Table 4.1 it is shown which com-
mitment is selected by the relational behaviour layer of the decision model, during
all phases of the commitment.

Table 4.1: Commitment validity during oll phases of the pass commitment by the
decision model. The commitment only influences the individual behaviour selection
in the Loop phase.

Phase: H Setup ‘ Loop ‘ End ‘

Agentl: | none | pass | none

Agent2: || none | pass | none

4.1.2 Commitment States

In order to achieve synchronization during the execution of a relational behaviour, a
commitment can be split up in steps. By splitting the commitment in several states
and linking each of the states to a set of primitive behaviours for both participants,
the participants will synchronize their actions at the beginning of each new state.

So first the commitment has been split up in phases. Now the phases will be
split up in states. In the Setup phase a commitment request is to be done and
the commitment has to be accepted. Next, in the Loop phase, we will execute the
relational behaviour. The End phase is divided in a done and a failed state, only to
make this distinction.

e request and accept in the Setup phase.
e statel until stateN in the Loop phase.
e failed and done in the End phase.

For all commitments, the states in the Setup and End phase will be the same, only
the states in the Loop phase will change. When the commitment runs as planned,
the commitment states will be run through sequentially, from request until done.
An error at any time can lead to the state failed. Table 4.2 shows a look up table for
the decision model to select primitive behaviours during all states of a commitment.

14

When in Table 4.2 a commitment state does not lead to a behaviour from the specific

2

commitment, it is indicated with ”—.

Table 4.2: Lookup-table for primitive behaviours by the decision model in all com-
mitment states during a commitment. W, X, Y, Z are primitive behaviours.

Commitment Phase: || Setup Loop End
Commitment State: | request | accept | statel | stateN | done ‘ failed ‘
Agentl — — W Y _
Agent2 — — X 7 _

A commitment will be started only after evaluating the logical conditions that
lead to the setup and the accept. By changing those conditions different commit-
ments can be achieved. Furthermore, when a commitment is to be defined, the
conditions for switching from state to state have to be defined, in such a way that
the commitment will run from the request state until done or failed. Different ver-
sions of a relational behaviour can be created by changing these switch conditions.
Finally the individual behaviours that are linked to each commitment state can vary
between different commitments. Specific examples of lookup-tables for primitive be-
haviours will be given in chapter 6.

4.2 Synchronization

The agent’s decision model runs continuously in a finite state machine, and selects
every iteration first a relational and then an individual behaviour. By dividing
a relational behaviour into several states, and attempting to keep both agents in
the same state all the time, synchronization of the actions of the participants is
achieved. The commitment states are defined in such a way that they can be run
through sequentially. We will define the execution of a commitment in such a way
that each iteration it will be checked in the decision model of the agents whether the
world situation allows the agent to step to the next state of the state sequence. The
agent communicates a state change always to the commitment partner. Finally if an
agent notices that his partner has moved on to the next commitment state, he will

follow him to this new state. So the loop during the execution of the commitment
will be:

e Synchronize commitment state with the state of the partner, if partner has
moved on to a next state.

e Switch to new state yourself, if the situation allows you to do that.

4.3 Conclusion
By splitting the commitment instantiation in phases and states, we created a way to

achieve synchronization using explicit communication. A relational behaviour can
be created by defining the following things:

15

New commitments or other versions of commitments can be created under the same
framework just by redefining one or more of the above listed things. Below in Table

commitment states

setup conditions

switch conditions

related individual behaviours in each commitment state

4.3 is stated how commitment is executed from beginning until end.

Table 4.3: Stepwise actions during all phases of the commitment of the execution of

relational behaviour R.

Setup

- When setup conditions <c1,..,cN> are true, agentl
does a setup request for relational behaviour R.

- When setup conditions <d1,..,dN> for agent2 are
true, he sends the accept of R. His setup conditions
include a request for R.

- At this point the commitment between agentl and
agent2 has been established.

Loop

- R is to be executed in states sI until sN. Switch
conditions to state sI includes acceptance of R.

- An agent in state si switches to next state sj, when
switch conditions <el,..,eN > hold, or when he notices
that is partner moved to state sj

- State done or state failed are entered following switch
conditions or following the partner as well

End

- When the participants know they are both in state
done or state failed, they quit the commitment.

16

Chapter 5

Implementation

5.1 Implementation Platform

The framework for relational behaviours as explained above has been implemented
in the RoboCup MSL team ISocRob, of the Socrob research group at the Institute
for Systems and Robotics in Lisbon. The robot team consists of four Nomadic Super
Scout II robots.

The software architecture used in the robots, contains several micro agents, run-
ning in separate threads. Each micro agent handles a different part of the robot
control [12]. Examples are the micro-agent Vision, which does image grabbing and
image processing, and Control, which executes the basic behaviours selected by a
decision agent.

Decision making and behaviour coordination is done in a micro agent called the
Logic Machine, explained in [16]. It is based on the previous mentioned work of
Drogoul [7], and divides the behaviours in three levels; organizational, relational
and individual. In the Logic Machine, only the organizational and the individual
levels were implemented to make the robots play soccer. In the work described here,
the relational layer is added and the individual layer will be used as well.

The Logic Machine uses first order logic statements for a fast evaluation of the
current world situation. At the individual behaviour layer, a hierarchical list of basic
behaviours is checked for pre-conditions. The first one that has all pre-conditions
true, will be selected. Those pre-conditions for the basic behaviours differ between
player roles. Figure 5.1 shows a hierarchical list of basic behaviours that can be used
for playing soccer.

17

Figure 5.1: Hierarchical list of individual behaviours in a soccer game when robot is
not involved in a relational commitment.

The decision layers are processed sequentially. This means for the robot that
he first chooses a player role, next he selects a commitment, and the individual
behaviour is selected after knowing the robot’s role and commitment.

Blackboard

The world model for each individual robot is stored in a memory called the Black-
board. The Blackboard is a data pool accessible to the above mentioned micro agents.
Variables contain world information, like field size and own position. When a vari-
able is updated by one of the micro agents, a time stamp is added, which makes it
possible to check validity based on recency. Two types of variables are used, so called
local and global ones. Local variables store information that is especially relevant
for the robot where it is stored or that information will not change, for example the
field size. Global variables are automatically broadcasted to all other agents when
a value is set. For example the robot position is associated with a global variable,
and this way the robots know each other’s position. One way to send information
to other robots is by using a global variable.

5.2 Implementation of the Framework

The relational behaviour framework as presented above has been implemented in the
Logic Machine. The loop, which continuously evaluates the world model in order to
make a decision, has been constructed in GNU Prolog. Decisions will be made by
checking predicates, whose truth value depends on other predicates and predefined
conditions.

First the distinction is made between the situation that the robot is already
involved in a commitment, and the situation that this is not the case. In the first
situation, the agent is executing the loop given in section 4.2, so each iteration first
synchronize the own commitment state with the commitment state of the partner
and then try to switch to a new commitment state. If the robot is not involved
in a commitment, the setup conditions for all possible relational behaviours will be
checked. To give an idea of the implementation, here are the main rules for the
relational behaviour layer:

18

chooseCommitment (DefCommitment) :-—
getCommitmentInfo(Commitment, MyRole, MyState, PartnerRole, PartnerState),
synchronizeStates(Commitment, MyRole, MyState, PartnerRole, PartnerState),
switchToNewState(Commitment, MyRole, MyState, NewState),
selectCommitment (Commitment, NewState, DefCommitment).

chooseCommitment (none) :-

setupConditions(_).

Several functions to recall or change variables of the Blackboard memory and
functions to handle the communication, have been created in program language C.
Those functions can be called by the prolog Logic Machine as well. Via pointers,
variable values can be passed through from C to Prolog.

5.3 Synchronization Variables

Variables have been defined, that store all the commitment information in the black-
board. For the decision making, the agent checks whether he is involved in a com-
mitment. If so his commitment role and commitment state are used for selecting a
behaviour. This information is stored in local blackboard variables. For the com-
munication between the agents about each other’s state, four global variables have
been created for each relational behaviour.

Local:
current.commitment
current.commitment.role
current.commitment.state

Global:
commitment.agentl: contains the identity of agentl
commitment.agent2: contains the identity of agent2
commitment.agentl.state: contains the commitment state of agentl
commitment.agent2.state: contains the commitment state of agent2

One of the issues that has to be taken into account is the restricted commu-
nication that is available. The robots communicate via a wireless network with a
restricted capacity. Experience from the past showed the importance of minimizing
the communication. In order to reduce communication to a minimum, a variable
only needs to be sent to the partner if it is changed. So the two identity variables
only need to be set in the Setup-phase and should be cleared in the End-phase. The
state variables also change during the commitment, but maximally as many times as
the number of states of the commitment. As stated in chapter 4, the state-variables
are synchronized in every iteration of the decision module. This means that if your
partner has moved on to a next commitment state, you will change to the same
state.

19

5.4 Imperfect Communication

During first tests of the working of the framework, it appeared we had to deal with
a real world situation, of which the framework had not taken care yet, namely im-
perfect communication. When a message was sent to another agent it appeared not
to be obvious that it arrived at the other agent. Previous use of the communication
concerned mainly the robot positions and the ball position. Every time a new posi-
tion had been estimated, it was broadcasted by setting a global variable. If a new
value somehow was not noticed by another agent, reasoning could just be done with
the old value without many problems. Also the frequency of new position values
made the implication on the robot behaviours almost zero.

However, in the execution of relational behaviours it is really important that
the agents know from each other in which state of the commitment they are, since
the synchronization is based on that. In order to reduce broadcast intensity it was
decided to send variables only when the value was changed. An agent who takes the
initiative to switch to a new commitment state, needs to know that his state change
is known by his partner. A confirmation is obtained by the incoming message that
the partner has synchronized his state. Note that an incoming message of a partners
state change implies that the partner already is in that state, since the agents use
their own, locally kept commitment state for further decision making.

The communication protocol, developed to handle the imperfect communication
problems, takes care of the cases that:

1. The communication fails completely.

2. The broadcasting of a single message does not necessarily mean arrival.

The first case is solved by a maintaining the contact by regularly sending the own
commitment state following a defined time period. By defining a timeout variable,
whose value has to be larger than the repeat period, the ”"Lost Contact” situation is
defined. Then the commitment has to be ended. The second problem is now taken
care of by simply repeating a switch to a new commitment state, until a confirmation
is received, or until a maximum number of repetitions is reached. The counter of
repetitions is set back to zero each time an incoming commitment state of the partner
is a previous one of the own commitment state. The maximum number of repetitions
can be set quite low, since information loss is more exceptional than regular. In
the theoretically possible situation in which the message still did not arrive after
the repetitions, the sender will notice that, because the rule of maintaining contact
makes that the partner will send his commitment state. If the partner is still sending
the previous state, the repetitions counter of the first agent is set back to zero and
the new state will be sent again.

The above explained variables are shown in Table 5.4. They are defined as local
variables in the blackboard. Different values have implications for certainty about
message arrival, and for broadcast intensity. In the case of perfect communication,
both mentioned time variables can be set to unlimited, and the number of repe-
titions to zero. Table 5.4 shows two other time variables. One defines the time
period a commitment request holds, the other defines a minimum period between
two commitments.

20

Table 5.1: Blackboard variables, used for the communication by the relational be-
haviour framework.

Name Dim. | Meaning

contact.repeat Sec To keep contact during a commitment, the
current commitment state is sent regularly to
the partner. This value is the number of sec-
onds between two repetitions.
contact.timeout Sec If the commitment state of the partner hasn’t
been updated for this number of seconds,
the commitment will be ended (”lost con-
tact”). This value should be bigger than con-
tact.repeat.

repeat.max Nr A state change with a single variable broad-
cast does not always arrive at the other robots.
As long as no confirmation of a state change
arrived, the agent will repeat his new commit-
ment state. This is the maximum of repeti-

tions.
request.timeout Sec If a request hasn’t been accepted after this
number of seconds, if will be removed.
setup.minTimeDiff | Sec To avoid noise in values, there is a minimum

time difference between the ending of the last
commitment, and doing a request for the next
one.

5.5 The Relational Behaviour Loop

The relational layer of the logic machine continuously evaluates the current situation,
to select a commitment that is used for primitive behaviour selection. The relational
component takes care of all communication between agents, in order to synchronize
the behaviour. Here the loop that is executed every iteration is summarized. First
the distinction between three situations is made. Here is stated what is done in all
situations:

1. No commitments are allowed:
- Selected commitment is "none”.

2. The agent is already involved in a commitment:
- Should the commitment be ended?
If TRUE, end the commitment.
- Is the partner’s commitment state ahead of own state?
If TRUE, set own state to the partners state (= synchronization).
- Is the partner in a previous state relative to the own state?
If TRUE, repeat sending of own commitment state.
- Is it possible to switch to the next state?
If TRUE, switch to new commitment state and communicate this to partner.
- Select commitment, knowing my commitment state.

21

3. The agent is currently not involved in a commitment:
- Is it possible to setup a commitment (request/accept)?
If TRUE, setup the commitment.
- Selected commitment is "none”.

5.6 Primitive Behaviour Implementation

When the relational layer of the Logic Machine has selected a commitment, the
individual layer has to select a primitive behaviour. As explained before, each com-
mitment state is linked to a set of individual behaviours for both agents. Those
primitive behaviours have been defined in a hierarchical list, and by turn they are
checked for predefined conditions. The Logic Machine already knows the player role
and the selected commitment. Examples of basic behaviour definition is given below.
Standard rule is: basicbehaviour(behaviour, commitment, playerRole). In
the example below, the player role is defender and the selected commitment is pass:
basicbehaviour(aimAndPass, pass, defender) :-
commimentRole (kicker),

commitmentState (prepare) .

basicbehaviour(standBy, pass, defender) :-
commimentRole(receiver),

commitmentState (prepare) .

basicbehaviour(standBy, pass. defender).

22

Chapter 6

Commitment Examples

6.1 When to use the Framework?

In this chapter examples will be given of the use the relational behaviour framework.
First it will be analyzed when to use the framework; for what type of relational
behaviour this framework is developed.

As stated in the introduction, the framework has been developed to create
planned cooperation between two robots. It has been built around the relational
behaviour of giving a pass in soccer. Typical of this behaviour is that it requires a
high precision of timing and synchronization. In our implementation environment,
it is not possible to achieve this synchronization by implicit communication, the
agents can not achieve enough precision in timing only by observing the other, so
explicit communication is used.

To illustrate the type of behaviour we want to create, imagine that two people
are moving a heavy couch. They will have to communicate about when to start
exactly and, maybe more important, when to stop. When one of them suddenly
drops the couch, the other has a serious problem. So timing and synchronization
is important. At the same time, they might not all the time be able to know each
other’s state without communicating, when the carrying gets to heavy for one of
them, he has to tell the other, so they can put the couch down and take a break.
The combination of required synchronization and impossibility to be aware of the
whole situation asks for an explicit commitment. Using the presented framework for
commitments, both agents know that both are involved in the relational behaviour
and both agents inform each other about the progress.

A real robot implementation of the pass fits in this picture. The explicit com-
munication allows the kicker to tell the receiver that the ball has been kicked. For
the receiver it is very difficult to decide this fast enough by himself. In this section
the implementation is shown of a simple version of the pass behaviour. After that
another more dynamic version of the pass behaviour will be defined, which is fully
integrated in the soccer code of the ISocRob team. Finally, to show that the frame-
work is not restricted to the behaviour of giving a pass, a small game-like situation
has been implemented.

23

6.2 Example: The pass behaviour

6.2.1 The Simple Pass Commitment

The use of the framework will be explained using the pass commitment that is shown
in Figure 4.1 in Chapter 4. The following pass situation has been defined: a defender
has the ball on its own half of the field and he will pass the ball to an attacker, who
is on the other half of the field. The commitment states of this pass commitment
are to be found in Figure 6.1. The state machines for both individual agents are
shown, and the behaviour is divided in states. A new state starts at the point where
synchronization is required.

The conditions to set up the commitment are shown in Table 6.2.1, as well as
the conditions to switch to other pass states within the commitment. Finally table
6.1 shows the primitive behaviours for both agents during all pass states.

Kicker STATE: Receiver

PREPARE
'%U(‘(‘ESS

Figure 6.1: Pass states for simple pass commitment.

Table 6.1: Primitive behaviour selection by the Logic Machine in the Loop-phase of
the simple pass commitment.

Loop-phase
Pass States: preparing ntercept
Kicker aimAndPass | standBy
Receiver standBy intercept

24

Table 6.2: Conditions that allow the player to switch to a new pass state during the
simple pass commitment.

’ Switch to pass state: H Conditions:

request || player role is defender
player has the ball
player is on own half of the field

accept || pass.kicker.state is request

player role is attacker

player is on other half of the field
preparing || commitment role is kicker
pass.receiver.state is accept
intercept || commitment role is kicker

individual behaviour is aimAndPass
ball has been kicked

done || commitment role is receiver

intercept behaviour done with success

failed || any behaviour failure
none || pass state is done or failed

6.2.2 Example: The Integrated Pass Commitment

The version of the pass behaviour as defined in the previous section is more a demo
version of the pass. During a game it might be unwanted that the receiver is only
passively waiting for the ball. In a more dynamic version of the pass commitment,
the receiver could be moving to a receive position instead of waiting in the standBy
mode. Furthermore the role of the kicker, after he has shot the ball, is in the demo
version to wait until the receiver has intercepted the ball, or failed to intercept the
ball. One could argue that actually the pass commitment is finished, at the moment
the receiver starts to intercept. From that moment on the receiver is the only one
who is acting in the relational behaviour, and the actions of the kicker will not
influence the result anymore. Thinking about this, a more dynamic version of the
pass commitment has been defined. This example shows a version of the pass as it
can be integrated in real robot soccer model.

Again we take a defender, located at his own field half, who wants to pass to a
team mate on the other field half. Extra added is that the first agent selects the pass
partner himself. Following heuristics, explained in section 7.4, he chooses the best
receiver, and sends a request only for him. In the example given here, the receiver
will always accept, he trusts the partner selection heuristic of the kicker.

Again picture 6.2 shows the state machines for both agents actions and the
division in states. Setup and switch conditions are shown in Table 6.2.2 and table
6.3 shows the primitive behaviour selection for both agents during the commitment.
This version of the pass has been fully integrated in the soccer model of the ISocRob
team. In this pass, three heuristics are used as well, in order to improve the behaviour
coordination. They will be explained in chapter 7 together with the individual

25

behaviours aimAndPass and intercept.

Kicker

Receiver

STATE:

PREPARE

Figure 6.2: Pass states for integrated pass commitment.

Table 6.3: Primitive behaviour selection by the Logic Machine in the Loop-phase of

the integrated pass commitment.

Loop
Pass States: preparing intercept
Kicker aimAndPass | standBy
Receiver goTo intercept

Table 6.4: Setup and switch conditions for the integrated pass behaviour.

’ Switch to pass state: H Conditions:

request || player role is defender
player has the ball
player is on own half of the field
pass heuristic has selected a possible partner
accept || pass.kicker.state is request
pass request is addressed to player
preparing || commitment role is kicker
pass.receiver.state is accept
intercept || commitment role is kicker
individual behaviour is aimAndPass
ball has been kicked
done || commitment role is receiver
individual behaviour is intercept
failed || any behaviour failure
none || pass state is done or failed

26

6.3 Example: The FirstHome Game

A third example will be given here to illustrate the use of the framework. This
example shows another application than the pass environment.

Maybe the reader is familiar with a game for children, in which the children
are walking randomly through a room, while they are listening to music. In the
room several chairs are placed. At a certain moment the music unexpectedly stops.
Then the children have to find a chair as fast as possible. The one who is last at
a chair, loses the game. The relational FirstHome behaviour presented here can be
compared with this game.

Two agents are randomly moving though the field. Both agents have a predefined
home position in the field. At a certain moment, for the agents randomly taken,
they have to return to their home position. The first agent who arrives home, tells
the other agent that he won. He waits until the second agent also arrived home
then they start driving around again. Figure 6.3 shows the states of the FirstHome
behaviour. Note that state waiting! and state waiting2 are parallel states. One of
them will be selected, the other one will be skipped.

Agentl STATE: Agent2

succ|37

Figure 6.3: States division for FirstHome commitment

Table 6.5: Primitive behaviour selection by the Logic Machine in the FirstHome
behaviour.

Loop-phase

Commitment States: || gohome | waitingl | waiting2

Agentl || goHome | standBy | goHome

Agent2 || goHome | goHome | standBy

27

Table 6.6: Setup and switch conditions for FirstHome.

’ Switch to state: H Conditions:

request || player has the ball
accept || firsthome.agentl.state is request
gohome || commitment role is agentl
firsthome.agent2.state is accept
wattingl || commitment role is agentl
commitment state is gohome
gohome behaviour ended with success
watting? || commitment role is agent?2
commitment state is gohome
gohome behaviour ended with success
done || commitment role is agentl
commitment state is waiting?2
gohome behaviour ended with success
done || commitment role is agent2
commitment state is waiting1
gohome behaviour ended with success
failed || any behaviour failure
none || commitment state is done or failed

28

Chapter 7

Individual Pass Behaviours and
Heuristics

7.1 Introduction

After the Logic Machine has selected an individual behaviour, the behaviour will run
in a control module. Here the world situation will be evaluated continuously, and
motor commands will be calculated and sent to the robot in order to influence the
environment. The world model of the robot can be seen as a map with all identified
objects in a xy-coordinate system.

In the standBy behaviour, the robot will stay at the same position and will
try to keep its front towards the ball. He will only rotate at its position. This
behaviour has been implemented earlier in the Socrob project [12]. The other two
behaviours, aimAndPass and intercept, had to be developed from scratch. The
aimAndPass and intercept behaviour is explained in the next sections. Furthermore
some heuristics will be described that are used in the pass behaviour to improve the
coordinated execution.

7.2 AimAndPass

When the pass commitment is started, the kicker has the ball. He wants to rotate
with the ball to a certain direction and then shoot. This has been implemented in
the aimAndPass behaviour.

Rotating with the ball can not be done by just rotating at the same position,
because the robot would lose the ball. In earlier research a controller has been de-
veloped to dribble with a ball [6]. The aimAndPass behaviour uses this controller.
The dribble controller gets a goal position as argument, so in order to turn to the
target direction a subgoal has to be defined as a position relative to the robot. This
subgoal is calculated as shown in Figure 7.1. It is positioned on a fictional circle
around the robot. The subgoal is the point on this circle in the target direction.
The coordinates of this point will be given to the dribble controller.

subgoal(x,y) = (x, + Rcos(a),y, + Rsin(a)) (7.1)

29

Where z, and ¥, are the robots position, R is the radius of the fictional circle around
the robot and « is the angle between the target direction and the robot orientation.

X

Robot Orientation

Target Direction

Subgoal (X, Y) -

R

L« R Rgbot (X p|Yp)

Figure 7.1: Geometry in the aimAndPass behaviour.

The dribble controller returns motor commands to the robot in order to move
the robot to the subgoal. A new evaluation of the world situation then leads to
a new subgoal and new motor commands. Note that the subgoal will always be
calculated on a distance R from the robot, so the robot never reaches the subgoal.
It is only used to force the robot to the desired direction.

7.3 The Intercept behaviour

In previous work in the Socrob project, the getClose2Ball behaviour has been devel-
oped. This behaviour returned the ball position to the navigation controller. While
approaching the ball, the settings of the navigation controller were changed in such
a way that the robot would reach the ball with a very low speed, in order to control
the ball immediately. This behaviour was especially designed for approaching and
getting control over a not moving ball. It appeared in no way to be able to intercept
a moving ball. Reactions to any ball movement always came too late. In this section
we show the design of a behaviour that does take the ball velocity into account.

7.3.1 Visual Servoing

The task of the receiver is to intercept the ball after it has been shot in its direction.
The intercept behaviour controller has been designed to guide the robot to the ball,
taking the ball speed into account. The literature on visual servoing has solutions for
similar problems [5], [9], but only for a situation when the robot tracking the object
is not moving within an environment cluttered with obstacles. In [1] a controller

30

for target-tracking using fuzzy logic has been developed, applied to ball tracking
in Nomadic Scout robots, but again in a non obstacle environment. The MSL
soccer field is a dynamic world containing moving objects. Therefore, the solution
described here is based on a navigation algorithm described in [6] which can take the
robot to a given goal posture while avoiding obstacles, using a modified potential
fields method that takes into account the non-holonomic nature of the robot. The
presented solution is based on iteratively estimating the fastest possible interception
point. The coordinates of this interception point are calculated, after predicting the
path of the ball and the path of the robot.

7.3.2 The Intercept Controller

Guiding the robot to the right position has been done by continuously estimating
the interception point given the positions of ball and robot, and their predicted path.
The interception point will be defined in xy-coordinates. At the interception point
the following equation is true:

(@(2), yp(2)) = (21 (t), yr (1)) (7.2)

where (z(t), yp(t)) is the estimated path of the ball as function of time, and (z,(t), y,(t))
the robot path. From (7.2), the interception point can be calculated as follows.

Figure 7.2 shows a ball with position (s, y) at time t = to and velocity (vig, Vby),
and a robot with position (z,,y,). The predicted path of the ball can be expressed
as a function of time:

(@p(1), y6(t)) = (2(t0) + veat, ys(to) + veyt) (7.3)

Here it is assumed that the ball has a constant velocity; the only variable is ¢.

For the path estimation of the robot, an extra assumption has been done. The
robot will move with a constant velocity in a straight line towards the interception
point. This implies that the orientation of the robot will not change during the
movement to the interception point. Furthermore the real forward speed of the
robot, v, will be replaced by an assumed constant average speed, v/.. This has been
done, because when the speed of the robot is very low, or even zero, the estimation
of the interception point will have a very big error.

Now, the robot path can be expressed as function of time, using the robot’s
current position (z,,y,), its absolute forward speed v/, given in the x-direction, and
the angle to the interception point . In the equation, « is still unknown.

(xr (t)v Yr (t)) = (xr (tO) + U;t cos &, Yr (tO) + U;t sin a) (74)

31

Ball X g Yp)

Robot orientation

VBY

Vg

Interception " s’
point (X, Y) -

(X R YR)

Figure 7.2: Calculation of the interception point with interceptor robot velocity V!
and ball velocity V.

After replacing (7.3) and (7.4) in (7.2), cosa can be eliminated from the x-
component of equation 7.2 and ¢ can be calculated from the y-component:

Vbady + Vhydly £ \[072(de? + dy?) — Vpa2dy? — 03,22 + 20000y

¢ 2 2

(7.5)

U;Q — Ubg™ — Vby

where d; = x, — 2, and dy = yp — yr; the distances between the ball and robot
positions in respectively the x- and the y-direction at time tg.

The t calculated above represents the time it takes for the ball and the robot
to get to the interception point. The equation returns two possible values. For the
interception behaviour, the smallest positive value will be chosen, since the ball is
to be intercepted as fast as possible. By replacing ¢ in the ball path from Equation
(7.3), xy-coordinates for the interception point are achieved.

When the function returns two negative answers, the ball is too fast to intercept.
Therefore it is possible to check such situations as well. The robot will not give up
immediately in those situations. He will always keep chasing the ball, until the ball
is outside the field. In those cases the xy-coordinates of an impossible interception
point will be the ball position after a short time period. This was designed this way,
because a single estimation error of ball position can lead to a wrong ball velocity,
and finally to no interception point. Also the ball might change direction, and there
will be new interception opportunities.

The xy-coordinates of the interception point are given to the navigation con-
troller of the robot, an earlier developed controller using modified potential fields
[6]. This process is repeated every iteration. The intercept controller block diagram
is depicted in Fig. 7.3.

32

. Ball velocity

1 Ball position]]

; — »| Interception point

i Robot position L

' Robot speed estimation xy—coordinates

Y

ROBOT Navigation
controller

motor

commands
Manipulations Motor -

Figure 7.3: Interception controller block diagram

WORLD

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- I
%
|
|
|
|

Note that, since the robots used are non-holonomic (differential-drive), the as-
sumption that the robot moves in a straight line to the interception point, ignoring
the initial robot orientation, leads to an error in the estimation of the interception
point. However, the estimation is iteratively applied and becomes more accurate at
each new iteration step, until when the robot faces the correct heading, where the
straight line motion assumption is fully correct.

7.3.3 Ball-Velocity Estimation

Essential for the presented intercept controller is a correct estimation of the ball
velocity. The world model of the agents provides the ball velocity already. Here is
explained how the estimation is being done.

The micro-agent Vision is continuously grabbing images from the robot’s camera,
and processes the image for object recognition. One of those objects is the ball.
After estimating the centre of the ball, a ball position is returned relative to the
robot position. This way the ball position is calculated about 20 times a second.
Another micro-agent, Fusion, puts n position samples with their time stamp into a
list, and from this list the ball velocity is estimated. Three methods for the velocity
estimation are available; the Normal Average-method (NA), the Weighted Average-
method (WA) and the First Last-method (FL).

e N A The ball velocity between all position samples is calculated and the aver-
age of them is returned as the ball velocity estimation.

e WA This method is the same as the previous, but the velocity units calculated
from each sample pair are provided with a validity weight, based on their
recency.

e FL The ball velocity is estimated using only the first and the last position
sample from the sample list. This way one big time period is used for the
estimation. An error in ball position will have a smaller effect

33

All methods have their advantages and disadvantages. In order to determine
which one would be best to use in the interception controller a small test has been
done. The NA method came out as best for the interception behaviour, because
although the average error of the FL method is slightly smaller, the NA method is
more consequent in the output, which will lead to a more stable intercept controller.

Sensor Fusion

In order to get the best possible ball position samples, also sensor fusion is applied
by the Fusion micro-agent, using multi-sensor Bayesian techniques [15]. Since the
robot has two cameras, a front camera and a omni-directional up camera, the ball
position can be determined twice within one robot. This information from both
cameras is fused locally to get the local ball position estimation.

7.4 The pass heuristics

For the pass behaviour a few heuristics have been developed that are used by the
robots during the decision making and execution. One is the heuristic mentioned
in section 6.2.2, to help the kicker with choosing the best receive partner. A second
heuristic one is used by the kicker to determine the exact coordinates for the pass
target, which are not necessarily the coordinates of the receivers position. Finally
there is a heuristic for the receiver, which is used in the integrated pass behaviour,
to determine the receiver position. This is the position where the receiver is heading
to, in the preparing state of the pass behaviour. The presented heuristics are meant
as initiative for strategic team play. They have been developed for the previous
explained integrated pass behaviour, but they can be improved or specified for other
game situations.

Pass target determination

To determine the pass target for the kicker, the observation has been used that it is
difficult for the receiver to control the ball after intercepting, when the ball is shot
straight towards the receiver. When the receiver grabs the ball from the side, there
is a better change for good ball control. In order to help the receiver, the kicker will
determine a target position at the receiver’s side. Figure 7.4 shows an example. The
kicker looks if the receiver is left or right of a virtual line from the kicker to the goal
centre. The pass target coordinates are defined as the receiver coordinates, placed
50 cm in y-direction towards the virtual line.

34

Receiver

- . B
Pass Target

Figure 7.4: Pass target determination.

Pass partner selection

In the integrated version of the pass behaviour, the kicker chooses a potential receiver
by himself. An easy heuristic, developed to make the kicker select one of his team
mates, is only looking at the positions of the team members in the field. The kicker
selects the partner who is closest to the opponent goal. It might be clear that in
soccer the positions of opponent robots are also important for partner selection for
a pass, since they can be located in between the kicker and the receiver. Since the
tool of identifying other robots is not available yet, we do not know the opponents’
positions yet, and only the own team members are taken into account.

Receive position determination

This third heuristic is also used in the integrated version of the pass behaviour. In
the prepare state, while the kicker is preparing the pass, the receiver moves towards
a certain position, that should facilitate the pass and create a better situation for
continuation after the pass. This makes the pass behaviour more dynamic. Again
a strategic good heuristic should take the opponent robots into account, but as
stated, they can not be identified yet. The used heuristic is quite simple: two
receiver positions have been defined on forehand, namely coordinates (1.2, 3) and
(-1.2, 3). He selects the closest of the two, without crossing a virtual line between
the kicker and goal centre.

Receiver
[]
¥/
Kicker /_\ hd
Receiver ©

Figure 7.5: Receiver position determination.

35

Chapter 8

Experimental Results

8.1 The Joint Commitments

The framework works as expected. As the commitment has been defined well, the
framework takes care of the set up, the execution and the ending and it handles the
communication as well. The communication protocol variables have been defined
empirically, Table 8.1. There is not one perfect value for those variables. Important
is to find a balance between the broadcast intensity and the certainty about the
communication.

Table 8.1: Values of communication variables.

Name Value
contact.repeat 04 s
contact.timeout 1.5s
repeat.max 5 times
request.timeout 1.2s
setup.minTimeDiff | 0.4 s

The time it takes from sending a message until a reaction from the receiving
robot between 0.1 and 0.2 seconds. That represents the precision of timing that can
be achieved by using explicit communication, it is the time it takes for one agents
to react on the other.

The framework provides the possibility for easily implementing different kinds
of relational behaviours, as shown with implementing two different versions of the
pass behaviour and the first-home behaviour. However, the results of the relational
behaviours strongly depend on the results of the corresponding individual behaviours
of both robots. The first-home behaviour uses relatively simple primitive behaviours,
and there the results of the use of the framework were good. The pass behaviours
showed some satisfying results, but a successful realization of a complete pass from
beginning until the end is only achieved exceptionally. Direct advantage of passing
the ball from the back of the field to the front is time gain. Passing goes much
faster than dribbling the ball, and even if the pass is not ended with complete

36

success, there can occur better game situations. In order to get more understanding
about the quality of the pass behaviour, the results of the individual behaviours
aimAndPass and intercept in a controlled test environment will be shown in the
following sections.

8.2 AimAndPass

The aim AndPass behaviour has been implemented following the methods described
in previous chapters. After some tests, the variable R, the radius of the fictional
circle around the robot, has been set to 0.5 m.

The performance of the behaviour is as expected. Figure 8.1 shows the result
of a test with a real robot on a MSL soccer field. The robot start position is at
the middle of the field, and his target is the middle of the goal which is located
diagonally behind him. The robot turns with the ball and shoots in the desired
direction. Tables 8.2 and 8.3 show results of 10 trials.

These results are obtained in a controlled test environment, However, on the
field, during a play, the direction does not always seem to be as accurate as desired.
Reasons for this can be found in self localization errors for the kicker and the receiver.
A small difference in the kicker orientation leads to a significant spatial error when
the distance to the target grows. In the discussion we will examine this more closely.

+ Initial robot position
-— % Intitial robot orientation
+ Target
—— Dribble path
& Shoot point
— - Ball path

Figure 8.1: Plotted result of the aimAndPass behaviour

Table 8.2 shows results of the precision of tests with the aimAndPass behaviours.
Trial number is in chronological order within the experiment.

37

Table 8.2: AimAndPass results.

Trial nr. | Angle (deg) | Distance (m) | Time (s) | Error (cm)
1 132 4.5 3.26 -17
2 138 4.5 2.59 Failure
3 133 4.5 3.30 +22
4 133 4.5 3.30 -20
5 135 4.5 3.28 -9
6 137 4.5 1.98 Failure
7 134 4.5 3.48 +3
8 134 4.5 3.20 -23
9 134 4.5 3.16 -9

10 133 4.5 3.23 +4

Table 8.3: Average results of aimAndPass tests.

Number of failures: 2/10 20%
Over turned: 3/8 37.5%
Under turned: 5/8 62.5%
Average time for success: || 3.28 s

Average absolute error: || 13.4 cm

8.3 Intercept

For the intercept behaviour, the assumed average robot speed, v/, has been set
to 0.5 m/s. An example of the interception of a moving ball by a real robot in a
MSL soccer field is shown in Fig. 8.2(a). Clearly it can be seen that the robot takes
the ball velocity into account, and moves directly to the interception point. In this
example, the ball rolls with a speed of 1.2 m/s in a straight line. The ball path that
is shown is the ball path as observed by the robot. Table 8.4 shows the results of
12 trials. The results are divided in successes and failures. A success means that
the robot ended with control over the ball. A failure can occur when the ball rolls
out of the field, or when the robot doesn’t see the ball anymore. Furthermore the
intercept trials are separated by whether the ball bumps away from the robot or
not, and whether the robot misses the ball or not. These cases are also illustrated
in the following pictures.

38

Table 8.4: Intercept results of a controlled situation where the ball passes diagonally
in front of the robot.

’ H Number ‘ Bump ‘ Miss ‘ Ok ‘

Success 5 2 1 2
Failed 7 3 4
Total 12 5 5 2

The pictures 8.2(a) until 8.2(d) show several examples of what can happen in
the intercept behaviour. In the first one a successful interception is depicted. Other
possibilities are that the ball bumps away, Fig. 8.2(b), or the robot misses the ball
before grabbing it, Figs. 8.2(c) and 8.2(d). Fig 8.2(d) also differs from the first three
examples by letting the robot start with his back towards the ball. All the examples
shown here ended with success.

Initial robot position
@ |Initial ball position

Initial robot position
® |nitial ball position

— Robat path — Raobot path
-~ Ball path -- Ballpath *
o Interception points b o Interception points =
" IO
&
o
o
o
-
(b)
Initial robot position 4+ Initial robot position
® |[nitial ball position ® [Initial ball position
—— Rohot path — Robot path
-- Ball path -- Ball path
o Interception points “ 5 o Interception points 4 ®
o =
e | L s
4
o o
(c) (d)

Figure 8.2: Intercept results of moving ball: a) immediate success; b) success after
bump at B; ¢) and d) success after the robot misses first

39

Interception of a stationary ball

The intercept behaviour is developed in such way that it should work independent
of the ball velocity. If the ball is not moving, the calculated interception point is the
same as the ball position. Figure 8.3(a) and 8.3(b) show that the intercept behaviour
also works for a ball without velocity. In the test situation the ball was positioned
2.25 meter behind the robot. Figure 8.3(a) is an example of how it should go, but
8.3(b) shows a more common occurrence; first the robot can not choose between
turning right or left, and after he has chosen, he overreacts. Both pictures show
interception points, not corresponding with the ball position, although the ball is
not moving. This means that the robot observes ball movement. This happens
especially when the robot is moving himself.

4 Initial robot position
—— Robaot path

e Observed ball positions

o Interception points

4 Initial rabot position
—— Robot path

s Obgerved ball positions

@ Interception points

o
o
_ o
%
o
I
o
@ a
0

(a) (b)
Figure 8.3: Intercept results with stationary ball (i.e., a ball that is not moving).

The only available primitive behaviour that was used before to guide the robot
to the ball was until now the getClose2Ball behaviour. This behaviour did not take
the ball velocity into account, and guided the robot straight to the observed ball
position. In Table 8.5, results of guiding the robot to a stationary ball show a better
performance of the getClose2Ball behaviour than of the intercept behaviour. The
ball is positioned 2.25 meter behind the robot and results are given in numbers of
failures, bumps.

Table 8.5: Ezperimental results of comparing the behaviours getClose2Ball and in-
tercept, with guiding the robot towards a stationary ball.

’ H GetClose2Ball ‘ Intercept ‘

Number of Trials 5 5
Success (Ball controlled properly) || 4 1
Success (after Bump) 0 1
Failed (Ball out of sight) 1 3

40

Chapter 9

Discussion

9.1 The Relational behaviour Framework

9.1.1 Flexibility of the Framework

The framework provides an easy way for defining a relational behaviour, and then
handles the set up, behaviour execution and end. The behaviour has to be defined
by:

commitment states

setup conditions

switch conditions

related individual behaviours in each commitment state

Completely defining a relational behaviour in advance, implies that there is no vari-
ation possible during the execution and that almost everything that will happen is
already decided and that because of that only a limited degree of complexity can be
reached. In this section some of the properties of the framework will be discussed,
and the capabilities of the framework will be examined. As we will see, there are
possibilities for variation, but the designer of the commitment has the responsibility
of a correct execution trajectory.

Parallel States

As stated in the problem description,this framework is meant for relational be-
haviours, in which both participants know what can happen and they know what
the other is doing. This is true by the fact that both agents should have the same
set of commitment states in the executed relational behaviour. But as can be seen
within the Firsthome behaviour, there are opportunities for parallel states. De-
pending on the changing environment during the execution one of the options will
be chosen. In theory, the framework allows an unlimited number of states, also par-
allel states. Then even the most complex relational behaviours can be created. Still,
the restriction that all commitment states have to be defined on forehand holds.

41

Flexible Conditions

By keeping the setup conditions open, different kinds of decision making are possible.
The conditions have been defined using logical predicates and propositions. The
values of the predicates and propositions can be generated by a neural network or
even a random answer generator.

The same thing holds for the switch conditions. Those values can be defined
as well using a neural network. Note that here it is more important to have the
conditions of both participants coordinated, because the current framework does
not do anything if none of the participants switch to a new state. Coordinating
the switch conditions is also important when one starts to work with more reactive
approaches of a relational behaviour. For example if the receiver in a pass behaviour
is allowed to switch to intercept by himself, what will happen if he does so while the
ball has not been shot yet? Following the current framework, the kicker will follow
to he intercept state, even though he should know this is not the right thing to do.
The designer of a behaviour will have to take care of this situation.

Synchronization

The framework provides synchronization only at predefined moments; within a com-
mitment state there will be no synchronization. One can think of extended relational
behaviours where this is useful. For example a whole soccer game can be seen as
one relational behaviour, where the agents do their individual behaviours, and only
need to synchronize when a referee demands so, for example when the ball is out
of the field or when it has been scored. The behaviour set of individually playing
soccer can be put in one commitment state.

9.1.2 Possible Points of Improvement

The presented framework is a general framework for relational behaviours. Still
there are some restrictions. As stated in the previous section, 9.1.1, the division of
a relational behaviour in states should be known by both participants. This is seen
as a consequence of the kind of behaviours that the framework has been designed
for, and this is not seen as being a restriction. Other improvements could make the
framework still more general. One of the restrictions of the framework is that it
handles only two agents. Another one is that the agents can only be committed to
one relational behaviour at the time. In this section we try to reason about options
for expanding the framework in these two directions.

More Agents

One of the restrictions of the framework presented here is that the relational be-
haviours only take place between two team mates. Omne can think of relational
behaviours involving more than two agents. Since the framework is based in the
Joint Commitment Theory, which is a general theory for teamwork, the basic ideas
of the framework can be the same. In the implementation all functions, like commu-
nication functions, are specifically built for behaviours with two agents. Adapting

42

them to handle larger teams would be an interesting future work and it would make
the framework more general.

Complex Commitments

Another limitation of the current framework is that an agent can only be committed
to one relational behaviour at a time, and it has to finish this behaviour completely
before starting a new one. More research should be done to check the possibilities
of making the framework somehow recursive. Maybe a theoretical analysis is nec-
essary in order to reason about relational behaviours nested within other relational
behaviours, but constructed at the same relational decision level.

9.2 The Pass Behaviour

Both pass behaviours showed some satisfying results, but a successful realization
of a complete pass from beginning until the end is exceptional. Both individual
behaviours, aimAndPass and intercept can fulfill their task with success under con-
trolled situations, but apparently they are not yet robust enough for a real world
situation. The four bottlenecks that are identified are:

Self-localization errors
Non-dynamic shooting mechanism
Difficulties with ball control

Ball velocity estimation errors

The first two concern mainly the aimAndPass behaviour, and the last two the
ball interception. Both behaviours will be analyzed in this section, and possible
improvements suggested. The pass behaviour itself shows that it has potential to
get better. The presented heuristics that are used, are just an initiative for more
strategic ones. For improvement in the pass partner selection heuristic and the
receive position determination, a great help would be to be able to identify other
robots, from the own team and from the opponent team. Furthermore, more research
could be done to different versions and pass situations. The pass presented here is
useful for the fact that passing the ball would go faster then dribbling the ball to
the other side of the field. When a better accuracy of passing is achieved the pass
can be used for example to create better score opportunities directly.

9.2.1 AimAndPass

As shown, in a controlled environment, the kicker shoots the ball well in the desired
direction. However, on the field, during a play, the direction does not always seem
to be as accurate as desired. Reasons for this can be found in self localization errors
for the kicker and the receiver. A small difference in the kicker orientation leads
to a significant spatial error when the distance to the target grows. Those errors
caused by localization can be avoided if the camera is used directly to determine
the target direction. If the kicker recognizes the receiver only by its own camera,
the global position is not important anymore. Figure 9.1 shows a situation where

43

the real kicker and receiver positions are shown, and the positions where they think
they are (the phantom positions). Using the phantom positions to determine a kick
direction, the ball is shot from the real kicker position, towards the pass target. This
case only involved position errors, not even orientation errors.

Pass target

Pass traj

Rea] kicker Position__ - 4

o
a

Phantom Kicker position Real receiver position

Phantom receiver ppsition

Figure 9.1: Example of the consequences of the localization error.

Furthermore, although kick direction might be good, the robot does not have a
mechanism for controlling the ball speed. A goal shot to score, a long distance pass
and a short distance pass will all be shot with the same force. The reason for this
is the pneumatic mechanism of the kicker, which has no possibilities for adaptation
during a game. For the ISocRob team perspectives for improvement of this issue can
be found in new robots for the team, which are currently under construction. They
will be equipped with an electro-magnetic shoot mechanism, which allows controlled
shoot velocities.

9.2.2 Intercept

The intercept behaviour shows some satisfying results in the controlled tests, but
many failures are to be found as well. Trying to find some aspects of improvement,
we will discuss some issues in this section, including ball velocity and ball control.
Furthermore the compared behaviour in intercept and getClose2Ball is discussed.

Ball Velocity

Essential in the intercept behaviour is the ball velocity estimation. As can be seen
in the results section, the robot does not observe the ball trajectory as a fluent line.
Since the velocity is estimated using the previous ball positions, the velocity is not
constant as well. To give an impression of the error in the ball velocity estimation,
the following graphs show the observed ball velocity when the ball is not moving.
In the first situation the robot is not moving as well, and the observed ball velocity
is plotted during a period of 21 s. In the second graph, the robot is moving with
a constant speed in a straight line, along the ball. The velocity is plotted during a
period of 8.4 s.

44

0.3 — Absolute velocity —— Absolute veloeity
--- Awerage observed velocity 05 --- Average observed velocity

1l (mis)
vl (/=)

Figure 9.2: Observed ball velocity: a) robot is not moving; b) robot is moving with a
constant velocity.

Ball Control

The robots do not have the same ability of controlling a ball at the interception point
as human beings have. Currently the ball control is achieved with a lucky arrival of
the ball between the small springs in front of the receiver, which are designed for the
controlling of the ball, but they can not be controlled actively. It is tried to make
the receiver reach the ball at the same speed as the ball is moving in the direction
of the robots velocity. But no negative speed for the robot is used. When the ball
is moving towards the robot, it is likely to bump. When the ball is moving in the
same direction as the robot, the ball control is better.

GetClose2Ball Comparison

In the results section, a comparison is made between the first getClose2Ball be-
haviour, which directs the robot to the ball without taking ball velocity into ac-
count, and the intercept behaviour, that does. Although the intercept behaviour
theoretically should guide the robot without problem towards a not moving ball,
the getClose2Ball behaviour behaves much better in this situation. Reasons for
this difference can be found in the errors in ball velocity estimation. In the pass
behaviour, the receiver can assume that the ball is moving, and use the intercept
behaviour. But if no pass is being executed, it would be great if the robot could use
the getClose2Ball behaviour in the case the ball is not moving and intercept when
the ball has a velocity. Problem that occurs is: how to determine whether the ball
is moving or not? The same ball velocity estimation can not be used, because of the
error it has. Then if the velocity estimation error could be reduced, the intercept
behaviour would act better with no ball velocity. So here we can reason in a circle
about when to use which behaviour. Ideal would be a perfect ball velocity estima-
tion. Then the intercept behaviour could handle both situations. In the current
situation, the intercept behaviour is only used in a pass commitment, and otherwise
the getClose2Ball behaviour guides the robot to the ball.

45

Chapter 10

What have we learned from this
research?

In this report the general formulation of relational behaviours among real robots,
based on the Joint Commitment Theory, has been introduced through an illus-
trative example concerning a pass behaviour between RoboCup MSL robots. The
formulation uses individual decision making and behaviour synchronization among
intervening robots and has been tested successfully during laboratory games with-
out an opponent. Results of the implementation of the key individual behaviours
(aimAndPass, intercept) in real robots were presented.

With this research we have tried to obtain a deeper understanding of the real-
ization of relational behaviours in embodied agents. The presented framework uses
explicit communication and explicit agreements. Exchanging information about the
progress of a relational behaviour is shown to be a good way to achieve synchronized
actions, especially when the agents’ own observations are not sufficient enough. The
framework provides a way to create cooperation in a goal-directed approach, which
implies that participants have a common representation of the joint goal. This is
not the case in many behaviour based approaches for cooperation. At the same time
the framework allows reactive coordination as well as directed coordination for the
relational behaviour execution, depending on how the relational behaviour has been
defined. The framework provides clear rules for the implementation of a relational
behaviour, which facilitates developing new or other cooperative behaviours.

Being able to execute planned cooperative behaviours, this research takes a new
step towards strategic team play in MSL robotic soccer. The same way human
beings can reason about cooperative behaviours in order to achieve future goals,
strategies in robotic soccer can be defined.

Restrictions of the presented framework are mainly that it allows only coopera-
tion between two team mates and it allows only one commitment at the same time.
Concerning the quality of the pass behaviour in RoboCup MSL soccer, we can say
that although coordinated teamwork has been achieved, the pass behaviour we have
developed still shows some bottlenecks. The results show that observation errors
and ball control problems make intercepting a moving ball difficult for robots.

Future work will concern the development of new relational behaviours under

46

this framework, as well as the refining of the individual behaviours, particularly by
using team mates visual recognition to eliminate the self-localization error and the
required communication during the aim AndPass behaviour, and by providing the
robots with force-controlled kicking ability, so as to enable ball interception by the
receiver robot, by reducing the ball speed for pass kicks, as compared to goal kicks.

47

Bibliography

1]

[10]

[11]

[12]

N. de Castro, R. Matias, and M. Isabel Ribeiro. Target tracking using fuzzy
control. In Proceedings of the Scientific Meeting of 3rd. Portuguese Robotics
National Festival, 2003.

P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35:487-512, 1991.

A. Collinot, P. Carle, and K. Zeghal. Cassiopeia: a method for designing com-
putational organizations. In Proceedings of the First International Workshop
on Decentralized Intelligent Multi-Agent Systems, pages 124-131, 1995.

MSL Technical Committee. Middle sized robot league, rules and regulations
for 2004. http://www.er.ams.eng.osaka-u.ac.jp/rc2004msl/msl-rules-2004.pdf,
2004.

P. Corke. Visual Control of Robots: High-performance Visual Servoing. Re-
search Studies Press LTD, 1996.

B. Damas, L. Custédio, and P. Lima. A modified potential fields method for
robot navigation applied to dribbling in robotic soccer. In RoboCup 2002: Robot
Soccer World Cup VI, pages 65-77. Springer-Verlag, 2003.

A. Drogoul and A. Collinot. Applying an agent-oriented methodology to the
design of artificial organizations: A case study in robotic soccer. Autonomous
Agents and Multi-Agent Systems, 1:113-129, 1998.

P. Gardenfors. Cooperation and the evolution of symbolic communication. In
Proceedings of Conference on the Evolution of Communication, 2001.

S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on vision servo control.
IEEE Transactions on Robotics and Automation, 13(5):651-670, 1996.

G. A. Kaminka, Y. Emaliach, I. Frenkel, R. Glick, M. Kalech, and T. Shpigel-
man. Towards a comprehensive framework for relational behaviours. In Pro-
ceedings of 8th Conference on Intelligent Autonomous Systems (IAS-8), 2004.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup: The
robot world cup initiative. In Proceedings of IJCAI-95 Workshop on Entertain-
ment and Al/Alife, pages 19-24, 1995.

P. Lima, L. Custédio, and et al. Isocrob 2003: Team description paper. In
RoboCup 2003: Robot Soccer World Cup VII. Springer-Verlag, 2003.

48

[13]

[14]

[15]

H. Matsubara, I. Noda, and K. Hiraki. Learning of cooperative actions in multi-
agent systems: a case study of pass in soccer. In Adaptation, Coevolution and
Learning in Multi-agent Systems: Papers from the AAAI-96 Spring Symposium,
pages 63-67, 1996.

E. Pagello, A. d’Angelo, F. Montsello, F. Garelli, and C. Ferrari. Cooperative
behaviors in multi-robot systems through implicit communication. Robotics and
Autonomous Systems, 29(1):65-77, 1999.

P. Pinheiro and P. Lima. Bayesian sensor fusing for cooperative object local-
ization and world modeling. In Proceedings of 8th Conference on Intelligent
Autonomous Systems (IAS-8), 2004.

V. Pires, M. Arroz, and L. Custédio. Logic based hybrid decision system for a
multi-robot team. In Proceedings of 8th Conference on Intelligent Autonomous
Systems (1IAS-8), 2004.

P. E. Stander. Cooperative hunting in lions: the role of the individual. Behav-
toral Ecology and Sociobiology, 29:445-454, 1992.

M Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Re-
search, 7:83-124, 1997.

B. van der Vecht and P. Lima. Formulation and implementation of relational
behaviours for multi-robot cooperative systems. In Proceedings of 8th Robocup
International Symposium. Springer-Verlag, 2004. To appear.

K. Yokota, K. Ogzaki, N. Watanabe, D. Matsumoto, A.and Koyama,
T. Ishikawa, K. Kawabata, H. Kaetsu, and H. Asama. Uttori united: Co-

operative team play based on communication. In RoboCup-98: Robot Soccer
World Cup II, pages 479-484. Springer-Verlag, 1999.

49

