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Abstract. The work presented in this paper is motivated by the goal of depend-
able autonomous navigation of mobile robots. This goal is a fundamental require-
ment for having autonomous robots in spaces such as domestic spaces and public
establishments, left unattended by technical staff. In this paper we tackle this
problem by taking an optimization approach: on one hand, we use a Fast March-
ing Approach for path planning, resulting in optimal paths in the absence of un-
mapped obstacles, and on the other hand we use a Dynamic Window Approach
for guidance. To the best of our knowledge, the combination of these two meth-
ods is novel. We evaluate the approach on a real mobile robot, capable of moving
at high speed. The evaluation makes use of an external ground truth system. We
report controlled experiments that we performed, including the presence of peo-
ple moving randomly nearby the robot. In our long term experiments we report a
total distance of 18 km traveled during 11 hours of movement time.

1 Introduction
Domestic spaces are significantly different from laboratory environments and of-

fice floors. Most of the robot navigation and path planning algorithms developed so far
assumes the latter and are inherently designed for such controlled environments. Peo-
ple’s homes vary not only with the cultural aspects of a country but also depending on
individual choices. Consequently, it is quite difficult to generalize home environments.
However, if the robot navigation algorithms accounted for certain recurring features
in people’s homes, e.g., presence of randomly moving humans, pets, unknown object,
displaced pieces of small furniture as well as hard-to-perceive surfaces, robot motion
would be perceived more natural in people’s homes. In this context, it becomes neces-
sary for such robots to not only execute an optimal path from a given start to goal pose
in the environment but to also avoid previously-unmapped obstacles and randomly-
moving people and pets.

In this paper we present a novel design for the motion of such robots in home-like
environments by coupling an optimal path planning strategy with a navigation algorithm
that inherently avoids previously-unmapped obstacles and randomly moving people.
To this effect, we integrate Fast Marching Method [1] for path planning and dynamic
window approach [2] to compute the motion velocity commands for the robot in real
time that automatically avoids previously-unmapped static and dynamic obstacles in
the environment. The novelty of this paper consists in the way these two methods are
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integrated and implemented on a real robot. In addition, we performed experiments
where the robot was expected to execute safe motion within human-occupied spaces.
In order to evaluate the performance of our technique, we also implemented a ground
truth system that estimates the robot’s actual path during the experiments. Comparing
the actual executed path by the robot with the optimal planned path will provide an
insight into how well our proposed method behaved in real-time application.

The rest of the paper is structured as follows. Sec. 2 describes related work with this
paper, followed by Sec. 3 where we describe the path planning, guidance and obstacle
avoidance as well as their integration. This is followed by the robot description, details
of the ground truth evaluation system and results of real robot experiments in Sec 4. We
conclude with a remark on future work in Sec. 5

2 Related work
Domestic service robots operating in domestic spaces require various challenging

functionalities, e.g., navigation, perception and manipulation, to accomplish a variety
of tasks [3]. The human factor, in the context of developing such functionalities, is the
most essential one. Consequently, new methods for robot navigation in the presence
of humans are being studied extensively. Authors in [4] present a thorough survey of
such methods where they identify comfort, naturalness and scalability as the three key
issues addressed by the existing human-aware robot navigation methods so far. How-
ever, in most such methods, time and energy efficiencies of the robotic systems often
get suppressed.

In [5] a method for human-centered navigation is presented which is based on vari-
ous heuristics, such as, to maintain a given distance to the robot, to keep humans within
certain visibility cone and to alter the robot velocity w.r.t. the human motion in the envi-
ronment. In a similar direction of work, authors in [6] explore the possibility of robots
learning the paths traversed by the humans, which is subsequently used by the robot’s
own path planner and obstacle avoidance system which predicts human trajectories.
Such methods not only tend to become computationally heavy but also their reliance
on human-centric heuristics might not hold true universally. To circumvent the need for
heuristics some works have employed visual perception for real time feedback and con-
tinuous re-planning. Such a method has been used in [7] to solve complex human-robot
cooperative tasks that includes navigation during the accomplishment of the whole task.
However, visual perception in itself is a challenge that can seriously affect the optimal-
ity and robustness of the whole solution.

Some works, e.g., [8] and [9], have explored planning in 3D representations of en-
vironment maps leading to much robust navigation that could inherently account for the
robot’s full height and complete traversability in the environment.

More recently, some very successful approaches, e.g., [10] and [11], have made
significant efforts in integrating efficient path planning and obstacle avoidance meth-
ods for navigation of domestic service robots in home environments. Apart from being
robust and reliable, one very interesting property of these integrated methods is that
they automatically account for human presence in the environment and do not depend
on any heuristics. In this paper we not only subscribe to the aforementioned property
but also focus on the optimality of the overall navigation of the robot in a home-like
environment, in addition to being robust and reliable.



3 Navigation
Navigation in this context is understood as the capability of a robot to move au-

tonomously in the environment with the goal of reaching a pre-specified final pose. The
time taken by the robot to execute this task should be minimal, while avoiding collisions
with obstacles as well as maintaining a certain clearance to them.

In this paper we take the classical approach of dividing navigation into self- local-
ization and guidance, assuming knowledge of a map of the environment. We also as-
sume that unmapped static or moving obstacles may appear in the environment, while
the robot is expected to deal with them in an appropriate way. We further assume an
existing self-localization system, possibly (but not necessarily) based on data fusion of
odometry and range sensor matching with the map.

The guidance problem is approached as a two step process. First, given a goal lo-
cation, the robot plans its path from the current pose to the goal pose. And second, the
plan is executed by the robot, in real time, while avoiding unmapped obstacles. These
two steps are described in the following two sections.

3.1 Optimal path planning

The path planning problem consists of determining a path for the robot to traverse
the environment, given a map and a goal pose. Rather than explicitly planning for a
path, we take a potential field approach. This potential field should have the property
that, for any given robot location, the path resulting from following the gradient descent
is the optimal path to the goal, while maintaining a certain clearance to the obstacles in
the map. Such fields can be obtained using a Fast Marching Method approach applied
to optimal path planning [1], which we closely follow. The process is explained next.

This potential field is obtained by considering, for each point x within the free
region Ω ⊂ R2 of the map, the minimal time it takes for a wave to propagate from the
goal location xg to the current robot position. The computation of this time for each
point x in the free region Ω results in a field u(x). Thus, the set of points that satisfy
u(x) = T corresponds to the set of points belonging to the wave front at time T . This
representation of a set is also known as level set [12]. It is well known that the path
resulting from solving the ODE ẋ = −∇u(x) from an initial x(0) = x0 results in the
optimal path from x0 to the initial wave front [1]. We set this wave front to an arbitrarily
small ball Γ ⊂ Ω around the goal location xg . The relation between the goal, the field,
and its gradient at the robot location is shown in Fig. 1(a).

Given an initial wave front Γ ⊂ Ω, the field u(x) is the solution of the Eikonal
equation

|∇u(x)|F (x) = 1

u(Γ ) = 0
(1)

where x ∈ Ω is the free space of robot position, Γ ⊂ Ω the initial wave front, and
F (x) is the wave propagation speed at point x. The specification of this speed allows
the resulting path to maintain a certain clearance to the mapped obstacles, since the
optimal path tends to keep away from areas with lower propagation speeds. Note that
this speed is anisotropical, that is, independent from the propagation direction of the
wave front. It should also be noted that this speed is completely unrelated with the
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Fig. 1: Aspects of the path planning method: (a) illustration of the field u(x) resulting from FMM, together with the gradient
over that field starting at an arbitrary position; (b) plot of the wave propagation speed F as a function of the distance d to the
nearest obstacle (for a C = 1).

actual robot speed, which is specified elsewhere. The wave propagation speed is only
used to promote clearance from mapped obstacles.

The field u(x) that solves the Eikonal equation has two key properties: (1) it shows
no local minima, and (2) the gradient descent path is optimal, given a wave propagation
speed function F (x), i.e., it is the smooth path γ(τ) that minimizes the integral∫ xg=γ(L)

x0=γ(0)

F (γ(τ))dτ (2)

where τ is the arclength parameterization of γ, that is ||γ̇|| = 1, and L is the total length
of the path [1].

To solve numerically the Eikonal equation we employ a standard Fast Marching
Method: given a discretization of the map in an occupancy grid, we supply to this
method the region of free space Γ , the propagation speed function F (x), and the goal
point, and in return we obtain a numerical approximation to the solution of the Eikonal
equation on the grid points. The speed function F (x) is obtained by reducing the speed
for the points near the mapped obstacles. Let d(x) denote the euclidean distance to the
nearest mapped obstacle point. Then,

F (x) =

{
− 1
C
d(x)2 + 2d(x), d(x) < C

C, otherwise.
(3)

where C stands for a threshold distance beyond which the wave propagation speed is
constant (see Fig. 1(b)). Therefore, the smaller the C, the lower the clearance of the
resulting path from mapped obstacles will be. This approach is quite similar to [13],
however, we allow for a plateau in F (x) beyond a clearance distance C. This allows the
robot to get closer to mapped obstacles, and thus resulting in shorter paths than in [13].

The resulting field u(x), which is obtained once after a goal position is given, will
then be used for the actual navigation. This navigation will aim at following a gradient
descend of u(x), while deviating from obstacles. Examples of several gradient descents
over such a field, for the real scenario used for experimentation (Sec. 4), can be found
in Fig. 2.
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Fig. 2: Example of the propagation speed function F (x) and the field u(x) for the real scenario used for experimentation,
as contour plots, together with a set of gradient descents from poses laid on a grid (within the scenario).

3.2 Guidance and obstacle avoidance

The goal of guidance is to compute in real time the robot actuation, in terms of
motion velocity, given a FMM field u(x) embedding the optimal path to the goal. We
solve this problem by taking a Dynamic Window Approach (DWA) [2,14]. That is,
given the robot’s current velocity, pose and available sensor data, DWA computes the
next motion velocity command. It is done by formulating a constrained optimization
problem over a discrete set of candidate velocity commands.

The outline of the algorithm is the following:

1. generate a set of candidate linear velocity commands
2. discard the velocity values beyond a specified maximum absolute value
3. discard the velocity values which could lead to a collision, that is, the robot is

unable to stop, at the maximum de-acceleration, in time before hitting an obstacle
4. compute an evaluation value for each candidate by weighting three contributions:

(i) progress towards the goal, (ii) clearance from obstacles, and (iii) absolute speed
5. select candidate maximizing the evaluation value
6. compute angular velocity based on the direction of the selected linear velocity, such

that the robot front tends to be aligned with the motion direction.

This algorithm follows closely the DWA as initially proposed in [2], except for novel
methods for both computing the clearance, taking into consideration the robot shape,
and the progress, based on the potential field obtained from FMM. Next, we will de-
scribe each one of the algorithm steps in detail.

Let the initial set of candidate velocities for (discrete) time instant t be C0(t) =
{vi(t)}, for i = 1, . . . , N , expressed in the body frame. These candidates are assumed
admissible, that is, they must comply with the kinematic constraints of the robot. In the
case of an omnidirectional robot, as in the case of the targeted robot, we can indepen-
dently control the motion velocity along these two directions. Thus, each candidate has
the form vi(t) = (vix(t), v

i
y(t)) representing the tangent and normal linear velocities.

Otherwise, the actuation space has to be appropriately parametrized, e.g., in the of a dif-
ferential drive, a possible parametrization is a linear and angular velocities pair. These
velocities are chosen in a grid of values around the current robot velocity, within the
acceleration limits of the robot. That is, ||vi(t) − vi(t − 1)|| ≤ AmaxT , where Amax



and T are the maximum linear acceleration and the period of the control loop (from
here on, we will drop the dependence on (t) for the sake of clarity). The next candidate
set C1 contains the velocity candidates within the maximum linear velocity, that is

C1 = {v ∈ C0 : ||v|| < Vmax} (4)

where Vmax is the maximum linear velocity.
Computation of both the clearance and the collisions, for each candidate, makes use

of a 2-D point cloud obtained from the range sensors, e.g., a laser range finder. These
points are here represented with respect to the body frame, being the union of the points
perceived from all sensors: L = {pj}, for j = 1, . . . ,M , where pj = (pjx, p

j
y) are the

point coordinates in robot body frame. Given a velocity candidate vi = (vix, v
i
y), the

point cloud is projected into a reference frame aligned with the candidate direction, that
is, the tangent and normal unit vectors eit and ein, computed using

eit =
vi

||vi|| ein =

(
0 −1
1 0

)
eit (5)

Thus, we get the projected points into this frame

pijt =
〈
pj , eit

〉
pijn =

〈
pj , ein

〉
(6)

where 〈·, ·〉 stands for the standard Euclidean inner product.
To compute the possibility of collision, we need to consider the physical space oc-

cupied by the robot, i.e., its shape. Rather than considering C-obstacles generated by
the point cloud, which would require a computationally expensive convolution oper-
ation, we project the robot shape along its motion direction, and compare it with the
obstacle point cloud. Let S be the region of the space, on the robot body coordinate
frame, occupied by the robot. Depending on the motion direction, the robot body will
span a certain longitudinal and a certain lateral space. We approximate this span with
a rectangular bounding box, aligned with the motion direction. That is, given a mo-
tion direction eit associated with a velocity candidate i, a rectangular bounding box
aligned to the (eit, e

i
n) axes is determined. This bounding box is delimited by the points1

(biF , b
i
L), (−biB , biL), (biB , biR), and (biF , b

i
R), expressed in the (eit, e

i
n) frame. The rela-

tion between this bounding box, the robot shape, and a candidate velocity is shown in
Fig. 3(b).

Assuming that the robot will be moving at speed ||vi|| along direction eit, given a
maximum (de)acceleration Amax, the minimum stop time is T imin = ||vi||/Amax and
the corresponding minimum stop distance is Di

min = ||vi||2/(2Amax). Thus, any ob-
stacle within a distance of Di

min of the robot front, across its extent, is here considered
to result in a collision. Any candidate with obstacles meeting this criterion are discarded
at this point. It should be noted that this criteria is an approximation, as we are approxi-
mating the spatial span of the robot by a bounding box. Formally, the new candidate set
C2 is obtained using

C2 = C1 \
{
vi ∈ C1 | ∃j − biR ≤ pijn ≤ biL ∧ 0 ≤ pijt ≤ b

i
F +Di

min

}
(7)

The selection of these candidates, which take into account both the maximum robot
speed and possibility of collision, is illustrated in Fig. 3(a).

1 Subscripts F, B, L, and R stand for front, back, left, and right.
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Fig. 3: Illustration of some aspects of the guidance method: (a) the velocity candidates form a grid (dynamic window) around
the current velocity value; candidates are excluded when either the robot maximum speed or found to lead to a collision with
a detected obstacle, resulting on a candidate set C2; (b) how the bounding box relates to the robot shape S and the candidate
velocity vi, both expressed on the robot body reference frame.

Now, the next step is the computation of the evaluation value for each candidate.
This evaluation function is a weighted sum of three contributions:

Vi = aPi + bCi + c Si (8)

where a, b, and c are positive weighting coefficients, and Pi, Ci, and Si quantify the
progress to goal, the clearance, and the speed of each candidate, respectively.

Progress to goal is computed from the inner product between the FMM field gradi-
ent and the velocity candidate, both expressed in the world frame. The field gradient is
numerically computed from the field values on a neighbor of a cell (x, y) as

Du =

[
u(x+1,y)−u(x−1,y)

2h

u(x,y+1)−u(x,y−1)
2h

]
, (9)

where h is the grid size and x and y are the robot position coordinates, scaled and dis-
cretized to grid indices. The candidate velocity is normalized to maximum speed Vmax,
so that its relative contribution to the evaluation function is independent from the max-
imum speed scale. The gradient is normalized into a unit vector, so that its contribution
to the progress to goal is independent from its absolute value (which, following (1), is
1/F (x)). Thus, the progress to goal contribution is

Pi =

〈
Du

||DU || ,
vi

Vmax

〉
(10)

Clearance is computed, for each candidate, from the closest distance to an obstacle after
moving along the candidate direction:

Ci = min ||(pijt − di, p
ij
n )|| (11)

where di = ||vi||T is the distance travelled along the candidate direction during the
control loop period.

Finally, the absolute speed contribution is simply the absolute value of the candidate
velocity

Si = ||vi|| (12)
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Fig. 4: MOnarCH robot platform: Exposed robot chassis and electronics (left-most). Robot with a color coded plate to
facilitate its ground truth pose estimation (second from left). Side views of the MOnarCH robot platform, showing the
position of each LRF (two images on the right side)

The optimal candidate results simply from the maximization of the evaluation values,
that is

v∗ = arg max
vi∈C2

Vi (13)

Since the target platform is omnidirectional, we have complete freedom on the
choice of the heading of the robot, provided that the direction of movement is covered
by range sensors. This extra degree of freedom can be used, for instance, to convey
expressiveness to the robot motion. Currently we are not exploiting this, and thus we
use a simple heading controller, based on a feedback proportional gain with saturation

ω = max {−ωmax,min {Keθ, ωmax}} (14)

where K is the proportional gain, eθ = arctan 2(v∗y , v
∗
x) is the angular deviation of the

candidate velocity with respect to the robot heading, and ωmax the specified maximum
angular speed.

4 Experiments and Results
4.1 Robot Details

The path planning and navigation algorithms described in this paper were imple-
mented on a 4-wheeled omni-directional robot platform (Fig. 4). This robot has been
specifically developed for an ongoing European FP7 project: MOnarCH2. In addition
to various other sensors and actuators as described in [15], it is equipped with two laser
range finders (LRFs) which are used for mapping, navigation, and obstacle avoidance
(as shown in Fig. 4). In particular, we use two LRF together for the guidance method:
the point cloud L consists of the union between the latest scan of each LRF, with the
appropriate coordinate transformation to the common robot body reference frame.

The platform runs Linux Ubuntu and the integration middleware is the widely used
ROS framework3. For mapping we use the gmapping package4 and for localization we
use the AMCL package5, both available out of the box from the base ROS installation.
The former is an implementation of a Rao-Blackwellized particle filter [16], while the
latter implements an Augmented Monte Carlo Localization (AMCL) method [17].

2 Project reference: FP7-ICT-2011-9-601033
3 http://www.ros.org
4 http://wiki.ros.org/gmapping
5 http://wiki.ros.org/amcl



Fig. 5: Testbed in the 8th floor of ISR with the MOnarCH robot during the experiment from the left and right cameras of the
GT system. The blue/yellow poles were knwon obstacles included in the map, while all the other objects on the field were
previously unmapped.

4.2 Ground Truth Evaluation
In order to evaluate the performance of our navigation algorithm, i.e., to infer how

well the DWA-based navigation performs w.r.t. the path planned using the FMM (gra-
dient descent along the potential field, as explained in subsection 3.1), it is necessary
to compare the FMM-planned path with the actual path taken by the robot during the
experiments. For the actual path taken by the robot, one cannot use the self-localization
information as estimated by the robot itself because this information is one of the inputs
to the DWA-based navigation algorithm. Therefore, re-using the self-localization infor-
mation to evaluate the performance of navigation will be incorrect. Consequently, it is
imperative that one must obtain the ground truth (GT) poses (position and orientation)
of the robot during the experiment from a totally external GT system. To this end, we
developed such a GT system as described further.

The hardware of the GT system to evaluate the pose of MOnarCH robot is the same
as the one described in [18]. It consists of two gigabit ethernet cameras in a stereo
baseline approximately 13m apart. They are connected to a machine with Quad Core
Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz, 8GB RAM, running a Linux operating
system. The model of the camera is Basler acA1300-30gc with a maximum acquisition
frame rate of ∼ 25 frames per second (fps) and a resolution of 1294 × 964 pixels (1.2
megapixels). The robot and the GT system were time-synchronized using the network
time protocol (NTP). In [18], this hardware was used to evaluate the 3D-position GT
of a spherical-shaped object of known color and size therefore making the use of the
stereo cameras. However, in this work we use this hardware to construct a GT system
to estimate GT poses of the MOnarCH robot. For this purpose, we placed a bi-colored
plate (stuck with two adjacent, colored, A4-sized markers) on top of the robot such that
the center of the plate was directly above the robot’s center of mass and the line joining
the center of each colored markers on the plate was aligned with the robot’s heading.
This arrangement can be visualized in Fig. 4 (second from left). As this robot moves
on a fixed plane, we could safely assume that the height of the robot’s plate above the
ground plane was constant throughout the experiment. This height was pre-measured
and used further in the GT pose evaluation of the robot.

Images from both the GT cameras (Fig. 5) were captured during the experiment
and post-processed. The process pipeline then consisted of color-based image segmen-
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Fig. 6: Robot actual trajectories during experiments: (a) GT experiments, in the 8th floor of ISR which is also shown in the
GT camera images of Fig. 5, and (b) a long 3 km test, according to the robot self-localization. The ragged lines on the left
corridor correspond to a situation where the robot got lost and required manual re-localization.

tation (for the colors of the robot’s plate) and blob detection. The centers of the blobs,
which denoted the centers of the colored markers on the robot’s plate, were transformed
from image coordinates to the world coordinates using the camera parameters under
the assumption that these centers were at a constant height above the ground plane (the
ground plane is denoted by Z = 0 plane in our world coordinate system). The camera
parameters (intrinsic and extrinsic) were obtained prior to the experiments. Using sim-
ple geometry on the center of the colored markers, the position and orientation GT of
the robot was calculated. Recalling that we had 2 cameras present in our GT system,
we used one camera for either sides of the environment in which the experiment was
carried out. As the height of the markers, and therefore the robot, was known a priori,
only one camera would be required to estimate the robot’s pose GT. Nevertheless, we
assume that between the two cameras, placed on either sides of the environment, the
one closer to the robot could produce more trustworthy GT of the robot’s pose.

4.3 Experimental results

We performed two main experiments, one in a controlled environment using the GT
system, and another one consisting of a longer duration run (1 hour and 50 minutes,
about 3 km traveled distance). Both took place at ISR, in separate floors of the North
Tower (IST). In these experiments, Vmax = 0.75m/s, Amax = 0.6m/s2, and T =
50ms. The trajectories for each of these experiments are shown in Fig. 6.

In the accompanying video (available at http://youtu.be/QW40yepKtuY),
we show all the trajectories of the first experiment, overlaying one of the GT camera’s
image stream with the 2D re-projection of the world coordinate estimates (robot’s ac-
tual (GT), self-localization and FMM-based poses). This video shows several actual
trajectories of the robot, in an environment where only some of the obstacles are on the
map, namely the three yellow/blue poles (shown with dark dots in the robot’s map in
Figs. 6(a) and 7). The previously-unknown obstacles for the robot (all objects on the
field in Fig. 5 other than the poles) are shown in Figs. 6(a) and 7 as dashed regions. In
the latter part of the run, randomly walking people, totaling 5 persons, were introduced

http://youtu.be/QW40yepKtuY
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Fig. 7: Three autonomous navigation tasks, showing the path planned using FMM in square-dotted blue and the actual
trajectory, according to self-localization, in dotted green, and according to the ground truth system, in continuous magenta.
From left to right: a trajectory without unmapped obstacles (1:14), a trajectory including unmapped obstacles (0:50), and a
trajectory with moving people (2:41). We include in parenthesis the approximate time (in minutes) each trajectory begins in
the accompanying video.

in the scenario. In Fig. 7 we show three of those trajectories, with different obstacle
types.

To access whether the proposed approach is getting us closer to our goal of depend-
able autonomous navigation of mobile robots, we have been running long-term tests
with the platform in the environment shown in Fig. 6(b) . These tests consists in as-
signing random goal locations within the free space of the environment. At the time
of writing, the platform has traveled a total of 18 km during 11 hours of movement.
During this time, the platform lost localization a handful of times, mostly due to in-
accuracies in odometry together with the range of the LRF being lower than half of
the corridor length. However, we have no significant collisions to report. The only ex-
ceptions are light touching of persons’ foot, explicable by the fact that typical feet lie
entirely below the LRF scanning plane. That is, it only perceives the persons legs.

5 Conclusions and future work
This paper presented a novel design for dependable autonomous robot navigation,

targeting domestic spaces, as well as populated public spaces. To this end, we employed
an optimization based approach, combining a Fast Marching Method with a Dynamic
Window Approach. The former provides optimal plan for the path, whereas the latter
optimizes over a set of feasible robot actuation commands, providing guidance and ob-
stacle avoidance. We evaluated this approach on a mobile robot platform, capable of
high speed motion. Both short-term controlled experiments and long-term dependabil-
ity tests were performed. The controlled experiments were evaluated using a ground
truth tracking system to compare the actual trajectory with the one resulting from the
Fast Marching Method.

As future work, we intend to continue long-term dependability tests, both in con-
trolled environments as well as in populated indoor public spaces.
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