
J Intell Robot Syst (2015) 80:525–536
DOI 10.1007/s10846-015-0188-0

Real-Time Ground-Plane Based Mobile Localization Using
Depth Camera in Real Scenarios

Miguel Vaz ·Rodrigo Ventura

Received: 7 July 2014 / Accepted: 9 January 2015 / Published online: 25 January 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Existing robot localization methods often
rely on particular characteristics of the environment,
such as vertical walls. However, these approaches
loose generality once the environment does not show
that structure, e.g., in domestic environments, making
the deployment of autonomous self-locating robots
difficult. This paper addresses the problem of abso-
lute online self-localization in a known map, where
the only required structure in the environment is a pla-
nar ground. In particular, we rely on the transitions
between the ground and any other non-planar struc-
ture. The approach is based on the ground point-cloud
and plane model perceived by a depth-camera. The
ground detection algorithm is robust to small shifts on
camera orientation during the robot motion, by deter-
mining the calibration parameters on-the-fly. Then
the edges of the ground point-cloud are estimated,
which can be originated by obstacles in the environ-
ment. The localization is obtained using a particle
filter fusing the odometry with a novel observation
model reflecting the quality of the match between the
ground edges and the nearest obstacles. For this pur-
pose, a cost function was implemented based on a
distance-to-obstacles grid map. Experimental results

M. Vaz · R. Ventura (�)
Institute for Systems and Robotics, Instituto Superior
Técnico, Universidade de Lisboa, Lisboa, Portugal
e-mail: rodrigo.ventura@isr.ist.utl.pt

M. Vaz
e-mail: miguelvaz@ist.utl.pt

using the ISR-CoBot robot are presented, run in dif-
ferent scenarios, including a bookshop during working
hours.

Keywords Kinect · Ground detection · Particle
filter · Point-cloud · Indoor mobile robot · Map-based
position estimation · RGB-depth sensor · Boundary
edges estimation · Absolute self-localization

1 Introduction

The use of autonomous assistance robots in home
environments is becoming increasingly necessary.
Their use is also imperative in other places where
they can help or provide general information related
to their environment. As far as the home use is con-
cerned, robots are able to help in daily tasks or assist
elderly people. As far as non-home use, robots can
give access to information, serve as an intermedi-
ary over long distance or even improve the qual-
ity of life of patients with motion restrictions. One
of the fundamental capabilities from this kind of
applications is the full autonomous self-localization.
This paper addresses this problem for general indoor
environments.

A number of publications have addressed the local-
ization problem in a variety of different approaches.
Nowadays there are two major approaches: the for-
mer is based on Kalman filter solutions [9, 21] and
its more recent developments [5] resorting to local

mailto:rodrigo.ventura@isr.ist.utl.pt
mailto:miguelvaz@ist.utl.pt

526 J Intell Robot Syst (2015) 80:525–536

sub-maps to solve the unbounded growth of the fil-
ter state overtime or [16] tackling its difficulty to
recognize already seen features resourcing to a joint
compatibility data association. The latter is based on
the Particle Filter solutions [1, 11] and its more recent
developments [12] resorting to a statistical approach
to adapt the size of the particle set on-the-fly or [7].
A comparison of the two approaches can be found in
[13]. The appearance of cheap depth-cameras, despite
often computationally complex to process, provides a
good resolution and perception of the 3D environment
at a low price.

Recent work has been performed on the localiza-
tion problem using 3D data sensors. Some methods
based their observation model on wall-planes features,
like in [6] and in [2], which use the depth informa-
tion to detect walls or other vertical planes features
and project them on a 2D map. However, besides their
remarkable performance, these algorithms show some
limitations, particularly in environments where walls
are difficult to detect - hidden by furniture or not
present (open-spaces). Furthermore, since they con-
sider the pose of the camera relatively to the ground
plane to remain constant, they are not robust to oscil-
lations that naturally occur during robot motion. Other
methods approach the problem from a different per-
spective, by using the 3D data for building 3D maps
of indoor environments and consequently estimating
the pose by data matching [3, 15] ,but the computation
effort of these algorithms is very high, unpractical to
be used in real-time.

We tackled the localization problem using the
RGB-Depth camera and the particle filter method to
address some challenges found in the literature: gen-
erality and robustness. The developed system assumes
a semi-structured environment based on a flat floor.
An RGB-Depth camera is mounted on a differen-
tial wheel robot, pointing forward slightly down. The
camera outputs a point-cloud, which is composed of
a list of points, defined by their 3D position in space
and their colour. Each 3D point of the set is asso-
ciated to one pixel on the image plane. The robot
used, the ISR-CoBot robot [20], is equipped with
the aforementioned RGB-Depth sensor, a joystick for
motion control and a differential drive kinematics for
locomotion.

The approach taken is thus performing the local-
ization based on the ground point-cloud. We assume
that the camera is always pointing both forward and

to the floor, while fixed to the robot (see Fig. 2). The
most important features of the floor are its bound-
aries, as these are the elements that perfectly define
it. The localization system is then implemented by
combining a dead reckoning based estimation with
an absolute localization system based on the ground
point-cloud boundaries. The absolute localization sys-
tem is implemented with the particle filter algorithm
using the ground floor boundary seen by the camera,
extracted from the previously detected ground point-
cloud. Therefore, in this work, a full-resolution ground
point-cloud detection system was developed, which
made the detection of the ground plane model and
the estimation of a robust point-cloud boundary pos-
sible. These methods helped us create an innovative
system, which merges these environment features on
the particle filter, by resorting to a special cost func-
tion. Our approach uses a ground detection algorithm
that is not sensitive to the absence of planar vertical
features, usable for semi-structured environments and
work in real-time.

This paper is structured as follows: Section 2 is
devoted to the aspects of the ground point-cloud
detection. In Section 3 the implementation of the
ground-Plane Boundary Estimation, using the result-
ing ground point-cloud, is evaluated by proposing
the general detection algorithm and an outliers filter.
Section 4 presents the localization system and explains
how we combined the ground boundary edges with it.
Section 5 presents the tests and results of this work
using ISR-CoBot in the Barata® bookshop, and com-
pares it with two other localization algorithms. Finally,
Section 6 presents our conclusions.

2 Ground Point-Cloud Detection

The ground point-cloud detection algorithm (see
Fig. 1) has three main steps: 1) detect the ground
point-cloud in the sensor space; 2) estimate the
ground plane model based on the ground point-
cloud; and 3) evaluate the transformation between
the sensor frame and a newly defined frame cou-
pled with the ground, based on the plane parame-
ters. But before going into the ground point-cloud
detection algorithm, an explanation of the framework
used and the problem geometry in this algorithm
will be provided in 2.1 which will be used ahead.
In 2.2 we will explain how we detected the ground

J Intell Robot Syst (2015) 80:525–536 527

Fig. 1 Illustration of the ground point-cloud detection algorithm steps

point-cloud from the raw point-cloud data and the
plane model parameters used in this mathematical
framework.

2.1 Ground Point-cloud Detection Framework

The ground is modeled as a plane and parametrized
using the implicit normalized form of a plane equation
defined below in the camera frame {C}:

aCxGC + bCyGC + cCzGC + dC = 0 , (1)

where
[
aC bC cC

]T
is the normal vector −→n , xGC ,

yGC and zGC are the coordinates of a pointGC belong-
ing to the ground-plane, and dC = −−→n · GC is the
distance of the origin OC the plane along −→n . It has
to be noted that the (1) is in fact a specification of the
equation of the distance of an arbitrary point to the

plane (points that have zero distance), and therefore
we have:

height (PC) = −→n · PC + dC

= aCxPC + bCyPC + cCzPC + dC , (2)

where PC = [
xPC yPC zPC

]T
is an arbitrary point.

This equation will be particularly useful to estimate
the height of a point in the point-cloud (the distance
from the ground).

Figure 2 pictures the geometry of the prob-
lem, where one can see the robot base frame
{R} (represented by {xR, yR, zR}); the RGB-Depth
camera frame {C} (represented by the orthonor-
mal base {xC, yC, zC}) observing the floor; and
the new camera-projection frame {CP } coupled to
the ground (represented by the orthonormal base
{xCP , yCP , zCP }). The {CP } frame is defined with its
origin equal to the projection of the {C} origin in the

528 J Intell Robot Syst (2015) 80:525–536

Fig. 2 Ground-plane
estimation geometry

ground-plane, the xCP axis with the same horizon-
tal direction of zC , the yCP left and the zCP pointing
up (−→n).

The ground-plane parameters are used to esti-
mate the coordinates of the camera-projection {CP }
basis axes in the camera {C} frame to then com-
pute the rigid transformation between the two, com-
pletely describing the geometry of the problem as
in Fig. 2. Therefore, considering the ground-plane
model (aC, bC, cC, dC) as in (1), the estimation of
the camera-projection {CP } basis in the camera {C}
frame, denoted xC

CP , y
C
CP and zC

CP , is performed in
two steps: first it is computed its origin OC

CP in the
{C} frame. Since OC

CP is the projection of OC =
[
0 0 0

]T
, it is obtained by translating the latter in

the direction of −→n and with the distance equal to the
camera height, which equals dC . Therefore OC

CP is:

OC
CP = OC − (dC)

−→n . (3)

The second step is estimating the xC
CP unitary vector

by projecting the zC vector on the plane to obtain its
horizontal orientation and then normalize the result.
Following the same procedure as in (3), the projection

of zC = [
0 0 1

]T
is translating it in the direction of−→n by the distance of its height. Using (2), we obtain:

xC
CP = zC − (cC + dC)

−→n − OC
CP

‖zC − (cC + dC)
−→n − OC

CP ‖ . (4)

Since zC
CP is defined as pointing up, it is equal to the

normal plane vector, or in other words:

zC
CP = [

aC bC cC
]T

. (5)

Finally, the yC
CP is the result of the external product of

zC
CP and xC

CP , as defined in the Cartesian systems:

yC
CP = zC

CP × xC
CP . (6)

The rigid transformation between the two frames is
then computed using the orthogonal Procrustes prob-
lem [14]. Considering that A is the orthogonal basis
matrix of {CP } and B is the orthogonal basis matrix
of {C}, we have:
A = [

xC
CP yC

CP zC
CP

]
(7)

B = [
xC yC zC

] = I3×3 , (8)

where the orthogonal Procrustes problem states that
finding the orthogonal matrix CP

C R (rotation matrix),
which most closely maps A to B, is equal to finding
the nearest orthogonal matrix of M = AT B. There-
fore, using the singular value decomposition (M =
U�V∗), we have:
CP
C R = UV∗ . (9)

The translation vector can be estimated directly
from the geometry of the problem since is performed
only along zCP by the absolute value of the height of
the camera. The translation CP

C t is equal to:

CP
C t = [

0 0 |dC |]T . (10)

Using the transformation Eqs. (9) and (10), the ground
point-cloud is transformed from the original frame
(camera frame {C}) to the camera-projection frame.
Since {CP } is contained within the ground-plane,
the resulting component of zCP of the point-cloud is
equal to zero. Therefore, discarding zCP , we obtain
a 2D representation of the ground point-cloud that is
more suitable given the aim of this work. Figure 1d
illustrates the transformation.

2.2 Ground Point-cloud Detection Algorithm

An initial calibration of the floor to obtain pre-
established values for the ground plane model is
required. The calibration also serves for the estima-
tion of the camera orientation and height on the robot.
The calibration process is shown in Fig. 3, where a

J Intell Robot Syst (2015) 80:525–536 529

Fig. 3 Calibration setup. a
RGB camera perspective, b
3D view

(a) (b)

chess pattern is placed in the line of sight of the depth
camera, maintaining the robot still. A chess pattern
detection algorithm [22] is used to detect the corners
pixels on the image. Then we obtain the correspond-
ing 3D points from the point-cloud, that we know are
part of the ground-plane.

Denoting G C = [
GC

1 · · · GC
i · · · GC

n

]
as the

list of n 3-D corner points in the camera frame
found, we estimate the calibrated ground-plane
parameters (a′C, b′C, c′C, d ′C) using the linear least
squares (LLS) estimator [17] to find the values
which best fit the data. A rescale of the parame-
ters was performed since the number of DOF of
the plane model (1) used is bigger than the space
it is defined in. This way, to solve the LLS we
have:

y = X · β (11)

X = [
G C

]T
, β =

⎡

⎢
⎣

a′C

b′C

c′C

⎤

⎥
⎦ , y =

⎡

⎢
⎣

−1
...

−1

⎤

⎥
⎦ (12)

β̂ = (XT X)−1XT y . (13)

After obtaining the non-normalized solution

(
ˆ

a′C,
ˆ

b′C,
ˆ

c′C, 1), we multiply the result by its nor-

malized factor, 1/‖−→n′ ‖, obtaining the final normalized
calibrated ground-plane model parameters.

The problem of detecting the ground point-cloud
and estimating the ground-plane parameters, during
the robot movements, is solved by analyzing the point-
cloud, filtered by a dynamic threshold function, using
a random sample consensus algorithm (RANSAC)
[10]. The dynamic threshold filter is defined as two
planes symmetrical along the calibrated ground-plane

model. The distance between the planes and the cal-
ibrated ground-plane model gradually increases as
one moves further away from the robot, as shown in
Fig. 4 where the orange/dashed line represents the
calibrated ground-plane, the green/dotted line stands
for the true position of the ground and the red
line indicates the value of the threshold function.
Since the position of the ground-plane changes sig-
nificantly in relation to the camera during robot
motion due to the vibrations, the calibration pro-
cess by itself is not enough to detect the floor
point-cloud on-the-fly. The design of this dynamic
threshold filter ensures a very robust and trustwor-
thy detection system during the operation of the
robot.

The framework described in Section 2.1 is equally
applicable to the calibrated plane model, and so
we denote O′CP as the camera origin projection on
the calibrated model, the corresponding orthonormal
basis as {x′CP

, y′CP
, z′CP } and {x′C

CP , y′C
CP , z′C

CP }
as the same basis but in the camera frame {C}.
The dynamic threshold function equation is the
following:

T hr(PC) = α1PC · x′C
CP + α2 , (14)

where PC is an arbitrary point in the {C} frame,
the α1 is the slope of the dynamic threshold func-
tion and α2 is the maximum height allowed at the
origin projection. α1 and α2 are therefore the reg-
ulation parameters of the filter. PC is then dis-
carded by the filter if its height is higher then the
value of its threshold (like P2 but not P1 and P3).
After applying this filter, we obtain a point-cloud
composed mostly by ground-plane points and some
outliers.

530 J Intell Robot Syst (2015) 80:525–536

Fig. 4 Dynamic threshold
filter definition. a
Perspective view, b 3D view

To filter these outliers and to estimate the
real ground model parameters, (aC, bC, cC, dC), a
RANSAC algorithm is used with the model character-
ized in (1). The result incorporates the ground point-
cloud (points considered as inliers). Figure 1d shows
the resulting point-cloud after the dynamic threshold
filter and the resulting point-cloud inliers after the
RANSAC algorithm.

Using the methodology already explained in
Section 2.1, we then estimate the true camera-
projection {CP } frame basis, the transformation
between {C} and {CP }, and more importantly, the 2D
ground point-cloud.

3 Boundary Edges Estimation

3.1 Estimation Algorithm

After the ground detection, a boundary edges esti-
mator was designed using the resulting 2D ground
point-cloud obtained. This estimation is based on the
concave hull algorithm, also known as α-shape [8].
Given a set of spacial points, it estimates the poly-
gon with the minimum surface that best describes
the enclosed shape of the points. Applying the con-
cave hull algorithm to the 2D ground point-cloud, we
obtain the list of edges forming the shape polygon.

J Intell Robot Syst (2015) 80:525–536 531

Following the example of Fig. 1d, the output of the
algorithm is shown in Fig. 5, where the black points
are the entire point set, the red Xs represent the points
belonging to the polygon shape, which are highlighted
in green/grey.

However, the resulting edges of the ground point
estimated with the use of the Concave Hull algorithm
exhibits two challenges: firstly, part of the edges are
caused by the intersection of the FOV limits with
the ground plane and, in addition, some edges can
be caused by shadows of objects in the line of sight
of the camera. One can see these two challenges in
the Figure 6 where in red we have the real edges, in
blue/black the outliers caused by the FOV limits and
in green/dashed the outliers caused by the shadows.

To solve these challenges, which is to say, to reject
the edges that are not originated from the environment
but from the sensor characteristics, we constructed an
outliers filter algorithm composed by two steps. The
first step of the filter algorithm copes with the outliers
caused by the FOV limits. The second step deals with
the outliers caused by the object shadows.

3.2 Outliers Filtering Algorithm

In order to obtain the first step of this filter, the FOV
model of the camera is estimated and posteriorly its
intersection with the ground-plane is computed, eval-
uating the location of its limits on the ground plane.
For the estimation of the FOV model of the depth-
camera, the pinhole model was used and consequently
the FOV was modeled as a four planes system, all

Fig. 5 Example the α-shape output result with red Xs being the
edges, black points the point set and green lines the polygon

Fig. 6 Example of the edges resulted from the α-shape algo-
rithm differentiating the type of edges: in red/grey the envi-
ronment edges, in blue/black the FOV limits edges and in
green/dashed the shadows edges

intersecting the focal point of the camera and form-
ing angles equivalent to the camera viewing angles.
These planes are estimated by the 3D positions of the
left-hand and right-hand upper and lower corners of
the camera image. Given these points and that all four
planes intersect the origin of the camera frame, the
model estimation comes through the definition of the
plane with three points. The normal for ith FOV plane,−→ni = [

ai
C bi

C ci
C

]
is then:

−→ni = (Ci
C − OC) × (Ci+1

C − OC) , (15)

where Ci
C and Ci+1

C are the 3D points of the image
corners and OC the camera origin. Since di

C rep-
resents the distance from the plane to the origin, it
is equal to zero (all planes intersect the origin). The
four FOV planes are therefore represented with the
equations in the camera frame {C} by:

ai
CxFiC

+ bi
CyFiC

+ ci
CzFiC

= 0 i = 1, . . . , 4 ,

(16)

where Fi
C is an arbitrary point belonging to the ith

FOV plane defined in the camera frame.
The lines of the intersection of the FOV planes with

the ground-plane are easier to compute in 2D space,
so a transformation of the FOV parameters space is
first performed. By using the transformation equations
from {C} to {CP }, we transform the parameters in
Eq. 16 into the {CP } frame to subsequently estimate
the parameters of the lines in {xCP , yCP }.

532 J Intell Robot Syst (2015) 80:525–536

The new normal vectors of the FOV planes in

{CP }, [
ai

CP bi
CP ci

CP
]T

are computed by the
rotation CP

C R estimated in (9), as following:
⎡

⎣
ai

CP

bi
CP

ci
CP

⎤

⎦ = CP
C R ·

⎡

⎣
ai

C

bi
C

ci
C

⎤

⎦ , i = 1, . . . , 4 . (17)

Next, the distance to the camera-projection origin, i.e.
the parameters di

CP , is estimated by substituting the
coordinates of a known point belonging to the plane in
the plane model equation. A point that is shared by all
planes is the camera origin, OC . The camera origin in
{CP }, denoted as OCP

C , is equal, by the geometry of
the problem, to the translation CP

C t estimated in (10).
And therefore, di

CP is:
{
OCP

C = [
0 0 |dC |]T

ai
CP xOCP

C
+ bi

CP yOCP
C

+ ci
CP zOCP

C
+ di

CP = 0
(18)

⇒ di
CP = −ci

CP · |dC | , (19)

resulting in the complete FOV planes equation defined
in the camera-projection frame {CP }:
ai

CP xFiCP +bi
CP yFiCP +ci

CP zFiCP +di
CP = 0 , (20)

where Fi
CP is an arbitrary point belonging to the ith

FOV plane in the frame {CP }.
The intersection is mathematically performed by

replacing in the FOV Eq. (20) the ground-plane equa-
tion (zGCP = 0) and so we have:

ai
CP xlCP + bi

CP ylCP + di
CP = 0 , (21)

where lCP is an arbitrary point belonging to
the ith intersection line on the 2D frame and
(ai

CP , bi
CP , di

CP) are the respective ith line param-
eters.

In the first step of the outliers filter, the previous
estimated lines are used to remove the FOV lim-
its outliers. So if the distance from the edge points
detected to one of these four lines is lower than a fixed
threshold, they are discarded. Following the examples
before, a result of the filter is shown in Fig. 7 with the
FOV intersection lines as indicated.

Since depth cameras compute the depth of the
objects in the scene by projecting an IR light, in the
estimated ground point-cloud it is possible to find
some shadows caused by the obstruction of such light
by random obstacles in the scene. These shadows will
cause a number of detected edges in the ground point

Fig. 7 Example of the output after the first step of the outlier
filter execution

edges estimated algorithm that are not caused by envi-
ronment features but by the edges of the shadows. One
can see these outlier edges in green in the Fig. 6. How-
ever, because of the geometric characteristics of the
problem, the outliers raised from shadows form a con-
stant angle with the origin (polar angle), i.e they are
aligned with each other and with the origin, as seen in
Fig. 8a.

In the second step of the outliers filter, the polar
angle of the remaining edges points is computed from
their Euclidean coordinates

[
xGCP yGCP

]
, as follows:

ϕGCP = atan2
(
yGCP , xGCP

)
, (22)

where ϕGCP is the polar angle of the point GCP . After
the edges are ordered according with their polar angle,
this is, in the resulting list of edges after they have
been sorted, the points that have smaller polar angle
appear first and the points with bigger polar angular
appear in the end. One can see in the Fig. 8b the result-
ing polar angle estimation, where the edge points are
ordered by polar angle. After, to filter out the out-
lier edges, one simply discards the group of points
that present a constant polar angle value from the list
of ground edges detected. In Fig. 8b one can see the
groups of points filtered out delimited by the blue
circles.

4 Robot Localization System

The localization system problem for a vehicle operat-
ing in a known environment is addressed resorting to

J Intell Robot Syst (2015) 80:525–536 533

Fig. 8 Example of a the
occlusion “shadow” edges
and b its azimuth

fi

fl

(a) (b)

a particle filter algorithm [11]. The available sensors
are the differential drive encoders and the RGB-Depth
camera, which provide, respectively, the odometry
readings and the point-cloud, from which the ground
boundary is extracted. This way, in the predict step,
the particle set is altered according with the odome-
try readings and with the robot-specific noise model,
as in standard particle filters. Next, the particle weight
estimation is based on the particle cost defined as:

wp = exp(−k
cp

max(cp) + ε
) , (23)

where cp is the cost of particle p, wp is the weight of
p and ε is a small number for numerical stability. The
bigger the weight, the better the particle hypothesis is.
Therefore, the probability of a particle being sampled
is higher the higher its weight is, being the particle
cost inversely proportional to it.

At the update step, the system obtains the point-
cloud from Kinect, estimates the ground point-cloud,
performs the edges detection and computes each par-
ticle’s cost. For the estimation of the particle cost

Fig. 9 Example of a distance-to-obstacles grid map

an occupancy grid map matrix [18] of the environ-
ment and a new, with similar size and resolution,
matrix called distance-to-obstacles D , where each cell
contains the distance from that respective cell to the
nearest occupied cell, are used. D is obtained by using
the Euclidean Distance Transform algorithm [4] over
the occupancy grid map matrix obtained by a map-
ping algorithm. In our case, the source points of the
close curve are the obstacles, i.e. the closed curve
propagates in the free areas. As a result, a matrix is
obtained where each cell Di indicates the distance
between the ith cell and the nearest occupied cell.
A D close up is shown in (9) with a color range
from red, for bigger distances, to blue, for smaller
distances.

Consider a particle p at pose
[
xW
p yW

p θW
p

]T
and

the set of points of the ground edges polygon L CP ,
in the camera projection frame. The cost estimation
of particle p starts by transforming the set L CP into
the world frame using the pose of the particle p,

Fig. 10 Trajectory performed in the data-set

534 J Intell Robot Syst (2015) 80:525–536

Fig. 11 Estimated path by
the AMCL, CGR and
GPBL algorithms

Trajectory

X [m]

Y
 [m

]

−22.7 −20.2 −17.7 −15.2 −12.7 −10.2 −7.7 −5.2 −2.7

−4.725

−7.225

−9.725

−12.225

−14.725

−17.225

−19.725

GPBL
CGR
AMCL

[
xW
p yW

p θW
p

]T
, the pose of the camera in robot and

the transformation from {C} to {CP }, obtaining the
list L W

p . L W
p is therefore the observed list of edges

in the world frame if the robot were in the particle p

(hypothesis). The cost function is therefore meant to

reflect the match between the robot observation and
the predictable observation of p. The cost of p is
defined as the L1-Norm of all the distances between
the ground edges L W

p and the nearest obstacles, i.e.
the L1-Norm of D cells that contain the point edeges

Fig. 12 Differences
between the pose
coordinates by the
AMCL,CGR and GPBL
algorithms

J Intell Robot Syst (2015) 80:525–536 535

Table 1 Means and standard deviations of the localization differences between algorithms

Alg.

CGR AMCL

|XR[GPBL] − XR[Alg.]| [m] 0.077 0.082

σ(|XR[GPBL] − XR[Alg.]|) [m] 0.078 0.079

|YR[GPBL] − YR[Alg.]| [m] 0.118 0.105

σ(|YR[GPBL] − YR[Alg.]|) [m] 0.128 0.086

|�R[GPBL] − �R[Alg.]| [deg] 3.04 2.69

σ(|�R[GPBL] − �R[Alg.]|) [deg] 2.60 2.53

detected. We can describe mathematically the cost
function with the following equation:

cp =
n∑

i=1

D(L W
p (i)) , (24)

where n is the number of points inL W
p ,L W

p (i) the ith

point list and D(L W
p (i)) the distance from the point

L W
p (i) to the nearest occupied pixel. The idea of this

methodology is that the smaller the sum of the dis-
tances, the better the correspondence of the map with
the edges detected at the respective hypothesis (par-
ticle) is. The cost of the particle is then converted to
its weight. The conversion is done using the exponen-
tial function (23), i.e. the smaller the particle cost is,
the better is the particle hypothesis. After, the resam-
pling is performed and the particle set is updated
accordingly as in standard particle filter.

5 Results

The real-time experimental results presented in this
work where obtained in a semi-structured environ-
ment, in a bookshop during its normal opening hours.

The sensor data collected is composed by the depth
image provided by the Kinect� camera, the odometry
readings provided by the wheels encoders and a laser
range finder (LRF) scan provided by an Hokuyo�

UTM-30LX. The first localization algorithm used for
comparison took as input odometry and laser data
only, the other took, like GPBL, odometry and depth
image data. The camera depth and the odometry
encoders stream outputs at approximately 30Hz and
the LRF streams outputs at approximately 40Hz. It is
worth remembering that this frequencies are not the

ones at which the algorithms run, but those at which
they receive the data.

The experiment consists of a robot moving around
the bookshop at an average speed of 0.4m/s, no count-
ing the moments the robot stayed still to let bookstore
customers pass. The general manoeuvre is approxi-
mately a 8-shaped path, like one can see in Fig. 10.
The total duration of the data-set is 7 min and 26 s (446
s). More experiments, data sets and their results can
be found online.1 Due to the impracticality of setting
a reliable ground truth system such as Vicon� or sim-
ilar, to analyze our algorithm performance, the poses
assessed by our algorithm were compared directly
with the ones assessed by the other two localization
algorithms. The algorithms chosen were respectively
the AMCL [12] since it is the standard localization
system of the ROS platform and the CGR [2] since
is the one used in the CMU-Cobot [19]. This makes
it possible for us to validate the effectiveness of our
method, since in the two methods used for the com-
parison, one employs a different algorithm but with
the same type of sensor (Depth camera), while the
other adopts both a different algorithm and a differ-
ent type of sensor (LRF), thus bringing diversity to the
comparison.

Figure 11 illustrates the robots estimated trajectory
in a 2D map for the CGR, the AMCL and the GPBL.
It is possible to visualize that during the experience,
even in this crowded environment, the pose estima-
tion gives a correct result, since the three algorithms
present roughly the same outcome. When observing
the 2D map it is important to consider the follow-
ing details: (1) red/medium grey line - Trajectory of
the robot by the CGR algorithm; (2) green/light grey
line - Trajectory of the robot by our algorithm

1http://users.isr.ist.utl.pt/∼mvaz/thesis

http://users.isr.ist.utl.pt/~mvaz/thesis

536 J Intell Robot Syst (2015) 80:525–536

(GPBL); (3) blue/dark grey line - Trajectory of the
robot by the AMCL algorithm. In Fig. 12 one can see
the absolute value of the differences between our algo-
rithm and other two used in the comparison along the
three degrees-of-freedom.

The observed uncertainty (particles standard devia-
tion) of our algorithm maintained a stable, low level,
during the experience. The averages and standard
deviations divergence with the other algorithms are
presented in Table 1. The average processing time per
iteration of the GPBL was around 0.17 s with a stan-
dard deviation of 0.13 s, using a Intel Core i5-2520M
@ 2.5GHz processor.

Note that while the other two algorithms used the
books on the shelves for localization, ours on the other
hand did not consider them. This is, the CGR algor-
tihm uses the books in the shell as vertical features and
the AMCL uses the books from the laser readings. We
did not remove them for practical reasons.

6 Conclusions

In this paper we described a localization system based
on a depth camera using a novel observation model.
The proposed system was implemented based on the
sensor perception of the ground, having shown that
this method is robust and generally applicable in semi-
structured environments. An evaluation in a real-life
scenario with a real robot was performed, as well as
a comparison with the state of the art. The algorithm
estimated the position of the robot in a satisfactory
way, corroborating our goal. In the future we intend
to challenge our system with environments that other
systems are unable to cope with, such as in the absence
of vertical walls. This work was supported by the FCT
project [PEst-OE/EEI/LA0009/2013].

References

1. Arulampalam et al.: A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. IEEE Trans Sig-
nal Process 50(2), 174–188 (2002)

2. Biswas, J., Veloso, M.: Depth camera based indoor mobile
robot localization and navigation. In: Proc. IEEE Int. Conf.
Robotics and Automation, pp. 1697–1702. IEEE Press,
Saint Paul (2012)

3. Borrmann et al.: Globally consistent 3D mapping with scan
matching. Robot. Auton. Syst. 56(2), 130–142 (2008)

4. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear
time euclidean distance transform algorithms. IEEE Trans.
Pattern. Anal. Mach. Intell. 17(5), 529–533 (1995)

5. Castellanos et al.: Robocentric map joining: Improving the
consistency of EKF-SLAM. Robot. Auton. Syst. 55(1), 21–
29 (2007)

6. Cunha et al.: Using a depth camera for indoor robot local-
ization and navigation. In: Proc. Robotics Sci. and Syst.
Conf., Los Angeles (2011)

7. Doucet, A., Johansen, A.M.: A tutorial on particle filter-
ing and smoothing: Fifteen years later. In: The Oxford
Handbook of Nonlinear Filtering, pp. 656–704. Oxford
University Press (2011)

8. Edelsbrunner et al.: On the shape of a set of points in the
plane. IEEE Trans. Inf. Theory 29(4), 551–559 (2006)

9. Einicke, G., White, L.: Robust extended kalman filtering.
IEEE Trans. Signal Process 47(9), 2596–2599 (1999)

10. Fischler, M.A., Bolles, R.C.: Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM 24(6),
381–395 (1981)

11. Fox et al.: Particle filters for mobile robot localization. In:
Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential
Monte Carlo Methods in Practice, pp. 499–516. Springer,
New York (2001)

12. Fox, D.: Adapting the sample size in particle filters through
KLD-sampling. Int J Robot. Res. 22(12), 985–1003 (2003)

13. Fox, D., Gutmann, J.S.: An experimental comparison of
localization methods continued. In: Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Syst., Lausanne, pp. 454–459,
Switzerland (2002)

14. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems,
Oxford statistical science series, vol 30. Oxford University
Press, Oxford (2004)

15. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-
D mapping: Using kinect-style depth cameras for dense 3D
modeling of indoor environments. Int. J. Robot. Res. 31(5),
647–663 (2012)

16. Neira, J., Tardós, J.D.: Data association in stochastic map-
ping using the joint compatibility test. IEEE Trans. Robot.
Autom. 17(6), 890–897 (2001)

17. Rao, C.R., Toutenburg, H.: Linear Models: Least Squares
and Alternatives. Springer series in statistics. Springer, New
York (2008)

18. Thrun, S., Bücken, A.: Integrating grid-based and topolog-
ical maps for mobile robot navigation. In: Proc. AAAI Nat.
Conf. Artificial Intell., pp. 944–950. AAAI Press, Portland
(1996)

19. Veloso et al. Deploying robots in an office environment:
Web-based task requests by users and autonomous robot
navigation. Submitted for publication (2011)

20. Ventura, R.: New Trends on Medical and Service Robots:
Challenges and Solutions, Springer, chap Two Faces of
Human-robot Interaction: Field and Service robots. MMS,
(in press) (2014)

21. Welch, G., Bishop, G. University of North Carolina, Chapel
Hill (2006)

22. Zhang, Z.: A flexible new technique for camera calibration.
IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334
(2000)

	Real-Time Ground-Plane Based Mobile Localization Using Depth Camera in Real Scenarios
	Abstract
	Introduction
	Ground Point-Cloud Detection
	Ground Point-cloud Detection Framework
	Ground Point-cloud Detection Algorithm

	Boundary Edges Estimation
	Estimation Algorithm
	Outliers Filtering Algorithm

	Robot Localization System
	Results
	Conclusions
	References

